

Dynamic Systems of Engagement

Dynamic Systems of Engagement

Scott Murray

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Fine Arts in Design and is approved by the MFA Design Review Board of the Dynamic Media Institute at the Massachusetts College of Art and Design.

May 2010 - Boston, Massachusetts

Gunta Kaza, Thesis Studio Advisor
Professor of Graphic Design

Joe Quackenbush, Thesis Seminar Advisor Assistant Professor of Design

Jan Kubasiewicz, Program Coordinator
Professor of Design

Abstract

We now have the tools and technology to create just about any interactive system imaginable. But how can we ensure that our designs are engaging? Dynamic System of Engagement illuminates how dynamic,隹 offer new opportunities for engagement Through numerous case studies, I explore hree core themes: data visualization, dyna systems, and engagement.
I consider data visualization broadly as a process of interpreting and expressing data of all kinds, not just numbers and text. I explore principles of systems design to illustrate how dynamic systems differ from works of static, pre-composed media, like painting, film, and tevision. 个naly, Hemhect hese thenes to methods of interaction and engagement. My past projects illustrate a range of From Gesture Project, which responds to physical gestures with patterns of rotating color-changing discs, to the ASCII Photo Booth a high-tech, low-fi interpretation of traditional photo booth, these interactive studies illuminate nontraditional uses of dat visualization, systems design, and interface concepts.
Although the concepts are valuable, more important is how real people respond to the designs. That is, what is the experience like? I conduct extensive user research with each project, the findings of which are used to

I adopt a framework of challenge and reward for sustaining engagement, which I then employ for two primary thesis projects, has its own distinct content and approach, has is own distinct content and approach,
 and finally resolving that ambiguity providing losure to the experience Roh proiects address the questions: How can we challenge someone while keeping them engaged, and how can we incentivize participants to overcome the discomfort of the challenge? Practice is a new interactive video piece that employs metaphors of stillness (physical and psychological) and reflection (visual and personal). While most interactive video installations reward motion, Practice rewards Iness, and in so doing tests participants olerance for physical discomfort and

Pretire

Practice employs computer vision methods of face detection and face tracking to identify so that mere visual stillness, without engaged users, elicits no reward. Visual and aural cues incentivize users to overcome the discomfort of the challenge, by establishing anticipation of the rewards to come. And through it all, the system collects data on participation, which is analyzed and visualized.
Cheeky, a second interactive video piece, is introduced and shown to apply the same principles of experience desig to engaging

Contents

16 Conceptions of Interface and Engagement Traditional, Theatrical, Psychological, Social

22 Elements

Medium, Data, Systems, Narrative, Engagement
vii Thanks

1 Preface

6 Introduction

59 Practice
92 Cheeky

99 Conclusion

103 References

Thanks to Joe Quackenbush for numerou valuable critiques and for so often just "getting it" and articulating why an idea was great, even when I wasn't so sure
Thanks to Jan Kubasiewicz for his
philosophical guidance and bureaucratic acrobatics, without which 1 would not have
been able to complete my time at DMI from San Francisco.

Thanks also to all the other DMI family members for their support over the past three years, including Agata Stadnik, Audrey Fu, Brian Lucid, Colin Owens, Cici Li, Dan Johnston, Dennis Ludvino, Elaine Froechlich,
Jason Bailey, Lou Susi, Mike Golembewski, Jason Bailey, Lou Susi, Mike Golembewski, immon Bae, and many others. You all influenced my work, sparked new ideas, and me to class via video. (Now please stop calling me "Computer") (

Special thanks to Aimée Bruederle for her
close review of this document, and to Huy for his ongoing encouragement and the use of his salon for my crazy art installations.

Extra-special thank-yous to my amazing
partner, Nora Heins, without whose prodding, encouragement, and support, I never would have pursued an MFA in design, let alone discovered this new life path. Thank you for nudging me in the right direction.

Preface

On he road up to Yosemte, here is an unmarked turn-off that leads to a dirt road. Aroud the bend, a small parking area come hundreds of swimmers secking respite from the heat: Teenage couples (or couples-to-be), mo and dads, and hundreds of little kids easily scramble over the granite boulders as though they weren't at high altitude. And in the center mountain water in the high foothills. A 20 -fo waterfall cascades down into the largest pool, a large hole in the ground originally dug as a mine shaft, going who-knows-how-deep into the Earth. After the mine was abandoned, a kitschy restaurant was built on the granite shelf above the pool, so visitors could admire he top of the falls and the swimmers below a hey ate. The restas med down

,

 Rainbow Pools for the first time last summer nd with lo al swies wail and paded mim ind or nater wil Australia. Without the safety of a designated humans-only swimming area, I am flooded humans-only swimming area, 1 am flooced space I'm entering, and how much or which parts of me they are interested in eating. In chlorinated water, Band-Aids and clumps of hair don't bother me; at least I can see the bottom, and verify for myself what is (and is not) in the pool with me. After my very first non-chlorinated swim in Australia, my phob spiked when we were told that there could have been estaarne crocodites nearby, bu

I guarantee that no crocodile, estuarine or otherwise, has ever taken a dip in the Rinconada Public Pool in Palo Alto (where I was a Junior Lieguard for three summers) they wouldn't b

admission.

See, I joke to diffuse the tension. Back at Rainbow Pools, I was comfortably out of the potentially infested waters, and noticed that the waterfall isself - and disappearing. The a minute or so later, they reemerged, laughing and splashing. I jumped back in, determined to push past my fears and swim behind the waterfall.
It was an easy decision to make from 100 feet away, at the far end of the pool. But onc I was in the water, very near the base of the was falling off of that grin mach wate
\qquad waterfall, so I could both swim and gras he slick, vertical rock wall, hoping for a and up when I realized that the rock existed only above the water line; when I felt for a foothold underwater there was nothing the Probably where the electric eels hang out, I hought.) And then, in that final push beneath he cascades, there weren't any thoughts at all. was pure action and reaction - swimming, breathing, grasping, grabbing, and then, all at once, I was out of the water, sitting on a small, moss-covered granite ledge, feeling beaten up but very alive, and looking back, up, and out at he underside - the inside! - of the waterfall. My racing thoughts began again, picking

hey had been silenced by a combination of ambiguity, discomfort, and focus. Would I ake it? I didn't know. What could I expect en In that Noida, as mbiguous and unpredictable. The ne dould have played out in any of unforeseeable ways. I was also extremely uncomfortable. My fear of deep, dark water was in play, as was he fact that I couldn't see or hear anything seful. I was literally grasping in the dark, nsearch of direction and stability, while eing hammered with a turbulent stream water from above. Oh , and I was out of reath, too. I wasn't in pain, exactly, but here was heightened physical, emotional, and tellectual discomfort. i couldritrason and
forward (or even go back) was to focus. In Japanese Buddhism, satori is sudden of truth. I understand satori as those brief truth. A dertand saori as those brief day-to-day mind falls away, and the whole being operates at such a level of intense foc hat time seems to slow down, without room for conscious thought. In reflection, it may oot be that time "slows down," but that in satori, we lose awareness of time (and all other abstract, intellectual constructss, as we focus only on the present moment. It is nly in retrospect, when remembering our experience of no-time, that we can analyze it with the benefits and entrapments of abstrac hought. We attempt to bring that special

thought leaves us, all that's leff is reality. For the Buddhist, perceiving reality correctly is, of course, the ideal achievement. Buddhism call he resulc enighterment, and sator is in
iny, bit--size taste of enlightenment.
In the Zen tradition, satori can be induce provided to students by their Zen mast provided to students by their Zen masters. A
student will receive the koan and meditate on it, for hours, weeks or even months, struggling to comprehend the incomprehensible. Koans are designed to essentially snap the student "out of his mind" and into reality, thereby achieving satori. Thus, they are intentionally illogical and cannot be "solved" like a riddle or even "understood" using the mind. Consider the now-proverbial "sound of one circuiting the students mis ad bringing
back to the present momen One of my favorites is from Mumonkan koans

The wind was flapping a temple fla nd two monks started an argument. One said the flag moved, the other said the wind moved; they argued back and forth but could not reach a conclusion. The Sixth Patriarch said, "It is not the wind that moves, it is not the flag that moves, it is your mind that moves." T two mo
1996)
This story is more receptive to intellectual interpretation than most koans. I understand as saying that we each create our own realitie beholder. That is the which we perec
"exists" only because we perceive it to exist. (If falls in the forest, and no one hears it es it make a noise?)
Most koans, though, are more esoteric: midday meal to listen to his lecture, he great Hogen of Seiryo pointed at the bamboo blinds. Two monks simultaneously went and rolled them up. Hogen said, "One gain, one loss. (Sekida 1996)
And some are just completely nonsensical: Nansen Osho saw monks of the Eastern
and Western halls quarreling over a cat. and Western halls quarreling over a cat dive an answer, you will saye the cat I Hive an answer, you wilt save the ca. and Nansen cut the cat in two.
That evening Joshu returned, and Nansen told him of the incident. Josho took off his sandal, placed it on his head, and walked out. "If you had been there you would have saved the cat," Nansen emarked. (Sekida 1996)
By presenting these stories here, in an academic document written in English by a Californian of European ancestry, I am taking these koans far from their native contexts. Anyone reading these koans here will interpret

of Buddhist upbringing and years of monastic training. By which I mean, it is easy to argue that these stories are nonsensical, because the don't make sense to me (and likely also to you). Nonetheless, we can find the koans
instructive, and even humorous. Joshù response to Nansen's story is downright comedic, although perhaps not intentionally so, and thereby illustrates the engagement value of the "awkward moment." Joshu's action can be deconstructed and analyzed for clues to the nature of reaity, but not before apparent absurdity The sandal-on-the-head
 following the serious dilemma of a halved feline. We have been primed with a dramatic conundrum, and are expecting a clean, morally acceptable resolution, but one is not offered. Koans, by design, offer our minds no such easy out; the tension of the unresolved awkward moment keeps us intrigued.
Comedy (another field in which I have no expertise, yet cite freely here) also relies heavily on the "awkward moment." First,

satisfactory way without violating one or mor social norms. Second, the situation is diffused, modified, or corrected, by way of a punc line. In between those two steps lies comed potential for engagement. In that moment unable to predict what could happen next, w focus completely on the scene before us. As the ancient koan authors certainly knew, satori can be induced by humo
Little did Joshu know that he would be succeded industry of comedians and television program aking those moment (aughs The Office, Gurb Your Enthusiasm, and It's Ahecoy Sunny in Philadelphia make us as uncomfortable as possible, albeit in the name of ratings, not enlightenment. I find some episodes The Office physically painful to watch. (On subsequent viewings, those episodes are more enjoyable, since I already know how the story is resolved.) What comedy calls the awkward moment, what Zen calls satori, wha we experience as the slowing of time and phenomenon by different names

My personal experiences of satori have arrived not through mental exercises, howev but intensely physical ones, such as my swim at Rainbow Pools. In those moments, struggling against the current, the immediat . was ambiguous, my physical state comfortable, and my attention intensely focused. My satori at the pools was triggered by a heightened state of anxiety, coupled with the fact that I couldn't predict how my curren that would mold ino a fure state. What would I find on the other side of the falls? Would there be a ledge convenient for me to
sit on? Or just a solid rock wall f turn back? Would the current pull me under before I could find out? Thankfully, those fleeting moments of intense focus concluded safely. But for me, Rainbow Pools was a koan, challenging my mental state, tricking me into a new level of awareness.
I wonder, as designers, can we deliberately induce this uncomfortable, yet rewarding state? Can interactive, dynamic media engage and challenge people as effectively as koans and comedy

Introduction

Although the meaning of the term "design" brs when applied to different discipines, solving within constraints. A successfully designed umbrella keeps its owner dry. A successfully designed bridge bears the weight of transport moving over it A successfully designed pacemaker keeps ticking, year in and year out.
Those objects, when well-designed, are more or less invisible. Yet, if the designs fail, they suddenly become highly visible Works of graphic design function in just the opposite way: visibility is key to their succes. They must draw attention to themselves in order to communicate and serve thei intended function.

Interactive design, a relatively young nalgamation of several fields - graphic cience, ind hum, sound design, compuer - must also draw attention to itself in order succeed. But visibility is not enough; participants must be engaged and motivated participants must be engaged and motivate
to interact, to communicate back to the system. Without engagement, there is no interaction between human and system, he communication flows in only on direction, and the design remains isolated, unexperienced. If the audience is not engaged he design is a failure.
Engagement, therefore, is essential to an teractive project's success. The degree duration, and depth of engagement required
epends upon the project's goals. For an online advertisement, a fleeting moment of gogerser one brand impression In that case he message is brief, task-oriented, and not he message is brief, task-oriented, and not
meaningful ("Click me!"). I am interested meaningful "Click me!"). I am interested
in creating meaningful and memorable experiences, the digital equivalents of a coastal hike on a beautiful day, or a great party with your closest friends. These experiences stay with us as happy memories that are kept alive hrough periodic retellings: "Remember that ime when...?" Designing and facilitating uch significant experiences requires eep, sustained levels of engagement with participant
Traditional media have many tools for
engagement available to them, including motion, audio, and captivating narra media offer opportunities for new lever necia orement through interaction In levels of engagement through interaction. In this
context, the "design" encompasses not just a context, the "design" encompasses not just a system of communication, but also a asstem of
interaction. Just as the structural engineer can design a bridge, the interaction designer can consciously and deliberately design systems that successfully engage participants. Fortunately, unlike bridge-builders, we have the luxury of working mostly with software, not steel, which allows us a grea deal of flexibility in our methodology. My approan is to fist define therment
with potential users as early and often as possible. Testing provides me with data both ras arge anecdotal data about -which then informs subsequen rof project to the design. to the design
My thesis projects, Practice and Cheeky, are the results of one year of intensive design research - plus two additional years of graduate study, and a lifetime of fascination in dynamic media. To appreciate wher came from.

At age four, I was given my first interactive,
dynamic, digital object: a Speak ${ }^{\text {nn }}$ ' Spell. The clunky orange box pronounced words that I then learned to spell on its keypad. This is my earliest memory of a device with true
interactivity it would prompt the interactivity: it would prompt the user, acce input, and then respond with feedbact
Alemga. I wanted to attend a class on Loco,
he early computer graphics programming
the early computer graphics programming
language, but it was for ages six and up only
language, but it was for ages six and up only.
At my parents' suggestion, I lied about my age At my parents suggestion, Iied about my age
to the friendly staff at the Junior Museum in Palo Alto. This deceit caused me a great deal of distress, but perhaps the anxiety motivated me to learn as much as possible before being found out and removed from the classroom.

FORWARD 100
RIGHT 90
PEnUP
PENDOWN
So began one of my first computer
programs, although I didn't realize it was programming at the time. All I knew was programming at the time. All I knew was
that I could tell the computer what to do, and it would do it. Also, it would do it correctly, every time. If a mistake was made, it was my own, and I could correct it. My simple circles, triangles, and squares weren't beautiful, but they existed because I had learned to speak the computer's own language. There was something attractive and intriguing about that. Maybe part of it was feeling like an insider, knowing a secret language that only I, the
oo, was satisfaction from solving the puzzle figuring out how to write a program that ould execute my vision. But it was also about imply providing instructions and watching he machine carry them out. The more complex the instructions, the more complex didn't know at the time) I could even repeat parts of the instructions, building up pattern parts of the instructions, building
with spirograph-ike complexity.
That same year, my family bought its first mputer. Our Macintosh 512 KE was very riendly to regular users, but not to aspiring programmers. My neighbor's Commodore 64 was the opposite - just switch it on, and begin ntering basic commands at the prompt.I emember returning home, excited to try ? O

ASC on my own computer, only to be sorely disappointed by the Mac's non-responsive and indifferent blinking question mark.
A few years later, I discovered HyperCard, an application that made it easy to create buttons, text fields, and pictures, and write
code so that behaviors could be attached to code so that behaviors could be attached to
those elements. I played with HyperCard for hours. I made Cipher, a program that for hours. 1 made Cipher, a program that
could encrypt or decrypt text using a basic could encrypt or decrypt text using a basic
substitution cipher. (This was perhaps my substituion cipher. (his was perhaps my
froject to incorporate audio. When encryption was complete, which could take minutes, a prerecorded sample would play: Sa-sa-sa-sa-cipheeeerrı...") In sixth grade, I made an interactive, choose-your-own-adventure style adaptation of the book Killing Mr. Griffn,
--
in lieu of a traditional, linear, written book report. Ms. Dolan didn't totally "get it," but she understood enough to know that this was a new form of creative expression. (Many creative liberties were taken, as the hidden cave and massively explosive finale don't didn't resonate with beor,.) Eve encouragh tho m to pursue similar projects, and she still gave to pursue similar
me an A. Follow.
Following that, I created Adventure, a non-
inear exploration through an underground cave, where clicking on doors and passageway led to other screens, all hand-drawn with the mouse, each one containing some hidden message or scary sound. HyperCard's built-in ransitions (basic dissolves, slides, and wipes) gave the piece a cinematic quality, and I could even animate transitions - making a bookcase swivel or flame flicker - albe slowly. Some people loved it, while many
couldnn' understand it- my first taste of interactive design's power to engage others (or fail to do so). or fail to do so).
Around that time, I a aquired my first modem. I had found a magazine on Bulletin Board Systems at the local newsstand, loaded with pages of phone numbers that could be dialed by computer - what a novel idea! With fifteen minutes of opening the box, I had connected the modem to the phone line, issue my first AT commands, and signed on to a BBS - my first experience with networked computing. In the following weeks, I tested every bBs in the 303 area code, and my frequent requests of "Don't pick up the phon
reminded my family that twas online, that word's first entry into our daily lives. After the next phone bill arrived, I was told to scale back my time online, since I had racked up a hundred dollars in so-called local-long distance cell. I wite in late at night worlds of FidoNet, Usenet, text filez, and many other things I can barely recall. ther things I can barely recal.
My middle school had a computer lab full of Apple IIEs, preloaded with Basic, just like
the old Commodore 64 . For some reason, M Danzer, the physical education instructor who made us run laps around the field, was also the computer and typing instructor. Her degree of disappointment with me on the track reversed as soon as we came inside to the lab, where she was impressed with my quick grasp of procedural instructions, logic, and ariables. While my classmates poked aroun the Oregon frail and seareted for Caine knock-knock jokes.
Also that year, I completed and mailed Also that year, 1 completed and m
a form to the Boulder Valley School District. They wrote back a couple of later to say that my first email address was ready: scmurray@bvsd.k12.co.edu. dialed into BVSD's server with my modem and typed "mail" at the prompt - my fir Unix command. This definitely was not a Macintosh, but a hardcore mainframe, just calling out to be explored. I experimented though gently, as I didn't want to break wrote enit mot fied
email about how cool it was that we could write messages to each other without stamps or interference from nosy teachers.
In eighth grade, I somehow begged a
hundred dollars to buy hundred dollars to buy Morth, a software package that mimicked the visual effects mad music video a year earlier A friend and Iot work, using his new LC I's video capture card and Adobe Premiere 1.0 I crafted a sequence of our friends smiling and laughing as they morphed into one another. We used the clip in our History Day submission, an 8 -minute video on the history of communication technologies, rendered entirely on the
computer. Our piece made it to the state-level competition, where it won only fourth place, so we didn't get to take our groundbreaking video to nationals in Washington, dc. That was how Ilearned that non-geeks will never appreciate the technology alone the wor expericiet was cutting edge technologicall occupied only 320 by 240 pixels in the center of the TV screen. The judges complained that it was too small, and thus hard to se disregarding my explanation that making a full-screen video would have required twice as much expensive ram and 48 hours to render instead of only 24 .
I made my first website in 1993 at the age of fifteen. My high school had received a gran of $\$ 100,000$ from Pfizer, which covered the cost of about fifty Macintosh LC iIIS, an Apple Quenection in morn,
unknown to most people. To thank Pfizer and my teacher asked me to put together a small website. I taught myself нтмL and filled a floppy disk with several inter-linked pages or student work and photographs of our fancy computers with color display
At college, I worked at Vassar's computer center, recovering theses from near-death experiences on demagnetized floppy disks. I continued making websites, both for myself, as a creative outlet, and for student groups. Upon my graduation, the alumni association hired me to revamp and expand their tiny site. This was my first professional, paid experience my in, and ine jobl at the redecign had to welcome and that the redesign had to welcome and older alumni with limited web experience. older alumni with limited web experience.
This was in sharp contrast to the work I had done until then, which was purely for my own satisfaction.

On September 11 of that year I built an online check-in system, so New York-based alumni could reassure others that they were safe. Since phone lines were down, people could post notes like "I spoke to so-and-s is afternoon, and she made it out of midtown safely..." We emailed the link to

about 20,000 alumni. The server nearly round to a halt, but that project probably ad a greater emotional impact on its audience Tan anything else I've worked on. Alumni ote and called us in tears, overflowing with gratitude.
Six years and three jobs later, I had learned great deal about web standards and usability search, but I left work every day with a eadache, bored in a position that was about en percent creativity and ninety percent bureaucratic struggle. So I applied to graduate programs in design. My focus was on graphic design programs (I had a fantasy of being a e designer, which has since passed), but
simary asset I couldn't speak the languase fletterpress, but hoped that Illustrator and InDesign would get me in the door
Thankfully, I was encouraged to look into TassArt by a friend, and the language on the DMI website made perfect sense to me, in contrast with other art schools' self-important copy. So I applied, and at the interview I could see that we were speaking the same language. But I still thought that DMI was a graphic design program. I didn't understand the distinction between that and dynamic media design until halfway through my first semester. ime-based, interactive, non-static, databased nerative, s. hrough my brain until I suddenly got it: This

\because $\because \because$

-

isn't about posters, books, business cards, or even websites! This is about designing the point of interface between people and their machines. The machine needs a system of satisfying pychologe people need a pleasant see how all my pastexperiences had prepared me for this new direction.
During that first semester, though, I grew
During that first semester, though, I grew
restless creating only conceptual designs restless creating only conceptual designs -1
had come to school to get creative and make new things. I wanted them to actually work! Keynote was not bad for faking it, but then I heard about Processing, an open-source free application then emerging from MIT. I downloaded it, bought a book (the best forty dollars I've ever spent), and got cracking.

What a surprise: This was the modern suerseded by far more advanced visul
capabilities, but it was essentially the same idea: a programming language for creating visual art, digitally. Processing, unlike LoG could also be programmed to accept user input and react in kind. So the process of using was not. Processing however, could "outpu" both static images and dynamic experiences. The system designer interacts with Processing system designer interacts with Processing end-user, client, visitor) interacts with the finished, compiled work. As the designer, I get to not only engage in the creative puzzle of translating a concept into computer-spea but I also get to define the terms of the puzz itself. I decide which elements and influences will be included in the system, and I then enjoy watching others interact with that system and figure it out

Methods of Engagement

We now have the tools and technology to
create just about any interactive system we can dream of. So how can we make them engaging? Dynamic systems offer three nev avenues for engagement: motion, interactio and content.
Visual motion is a powerful tool for attracting and maintaining attention. Motion is processed pre-attentively, meaning that w
perceive motion before we are consciously perceive motion before we are consciously
aware of it (Ware 2004). That's why it can aware of it (Ware 2004). That's why it ca
be so hard to tune out the visually busy be so hard to tune out the visually busy
animations of online advertisements; your eye will jump straight to them, even though, consciously, you are already aware of the source of motion and have decided it's no longer relevant to you. Motion can be used to capture (and re-capture) attention, even against the participant's conscious will. Motion can also be used to communicate information, such as through data visualizations or interface feedback, within certain limits. Yet our perceptual abilities
are limited in how much motion they can are limited in how much motion they can
comprehend at once (Ware 2004). While comprehend at once (Ware 2004). While
large numbers of independently moving large numbers of independently moving
visual objects may be beautiful, they cannot visual objects may be beautiful, they cannot
be interpreted meaningfully. Later, I will review my Gesture Project, which captivated participants on a visceral level through hundreds of moving shapes.)

Once users are paying attention, they can be engaged by interactivity. I define interactivity as the two-way feedback loop between system and user. The faster that feedback is provided, the better. A more responsive system is always more engaging. Dynamic systems can employ any number
finteraction methods, but I find one to be , Wind ost effective: mirroring. Visual mirroring sa medium-specific method as it requires live video input. By capturing an image of he participant, flipping it horizontally, and as a mirror enhanced with computational wer. The "mirrored" image, then, can be augmented with additional visuals or replaced entirely with some algorithmic interpretation, as done by the ASCII Photo Booth.
According to artist Camille Utterback, a pioneer of interactive video installations and 2009 MacArthur Fellowship awardee, peop tuitively understand how to move and teract with mirrored video by virtue of their xperience in the physical world (i.e., using real mirrors) (2009). Psychological research
supports and expands on that view. English supports and expands on that view. English he first in the field to study the powerful role of mirroring in child development. Winnicot summarizec his findings in the statement,
"When I look I am seen, so I exist" (1967). Mirroring is such a powerful technique for
engagement in part because it shows us tha we are being seen. Our actions and very existence are validated and proven to be real. explore the psychology behind mirroring in nore depth later in this document. After motion and interaction, the third new opportunity for engagement is through power and network connectivity, dynamic ystems can draw data from practically anywhere, either the user's mouse moveme anywhere, ether the user's mouse movements
or a database on the other side of the planet. The potential for engaging users through unexpected, current, time-sensitive content is enormous. And this, more than anything else, is why we must think of these projects in terms of systems: Unlike highly composed paintings, sculptures, photographs, and even films, the content of a dynamic system is not fixed and may not be defined in advance. Rather, the designer defines the sope and structure of the contents. Then, only the system express that data.
The use of quasi-random content from The use of quasi-random content from networked sources is an exciting oppor
for it practically guarantees that each experience with the system will be unique. But designing a system to handle a limitless variety of content is not possible; some restrictions must be put in place. And creating such a system requires a new design approach

Congrionos flimetrace and Engagement

I began this year of research with one primary goal in mind: to create one project dignificance. It should be interactive, with sual be aurat elements, but above all, it must be engaging. Ideally, it would also invok But engagement is requisite to experience so I begin by exploring recent thought on user engagement within the context of humancomputer interfaces.
Traditional
The term "interface" is loaded with meanings, but it is typically used to describe the collection of elements that mediate between a system and its human operator. Today, that commonly means a set of physical input
evices (mouse, keyboard, video camera) and output devices (visual display, speakers, printer). Most of any computer's parts are ot accessible to the average user (central
 days of computing humans had to go to grea ognitive lengths to communicate to these o-called "system internals," via interface methods like physical switches, punch cards and keyed-in commands. Today, we type, tap, and scribble, but years ago, computer "users" were computer "operators,", a term which eflected the skill required to operate the complex and physically intensive interfaces f the day. These early interfaces were high bstract, requiring hundreds of hours of dedicated learning time to achieve proficiency

I suspect that they were engaging only for the few who had invested the time and energy to understand them.
The graphical user interface (GUI) is a relatively recent phenomenon that evolved to
address the need for more address the need for more accessible method of interaction. Visual imagery is relatively
data-intensive, and it was not until the late 1970s and early 1980s that digital memory and computation power was sufficiently advanced o support visual interfaces. As the cost and size of components diminished, interest in the new concept of "personal computers" grew. But if computers were to be adopted by the masses, the interface would have to be far more intuitive.
The Xerox Star introduced the first true Sur in 1981, using the now-familiar metaphor
of a "desktop," "files," and "folders," along with the mouse and keyboard input devices. The Star was soon seceded Apples Lis Cirost Wi (1985 war Althonh (1985 onwar,
Although there was some variation in each of these systems' visual representations, the fundamental interface structure was the
same. By enabling users to "move" visual objects with actual, physical motion through mouse motions like drag-and-drop, these GUIs enabled direct manipulation of abstrac ephemeral data. (We owe the term "direc manipulation" to Ben Shneiderman, pioneer in the fields of interface design and information visualization.) Consider the difference between (A) sliding a mouse to the
move a corresponding amount to the right, and (B) typing in a command that describes the desired action: "move object right." In the lanerend ber " the command foreign syntax yet yet conceptual abstraction. The user must first imagine the desired outcome (object should be on the right), determine what needs to be done to achieve the outcome (object is moved, and express that command in syntax that the machine can understand.

As Brenda Laurel, researcher and theorist, explains in her book Computers as Theatre, direct manipulation interfaces employ a psychologist's knowledge of how people relate to objects in the real world in the belief that people can carry that knowledge across to the
manipulation of virtual objects that represent computational entities and processes" (1993) Thus, if done successfully, such an interf friendly") simply by taking advantage of friendly) and expressive abilities. It may still be necessary to explain that a particular ic necessary to explain that a particular icon
represents a "folder," but most people do not need to be told what a folder is. At a certain point, however, GUI metaphors break down. (Real-world "windows" rarely overlap each other, for example, and "menus" do not spawn generations of "sub-menus.") Nonetheless, the traditional graphical interface is greatly more accessible to the general public than its predecessors.

ompositions (such as films and books), we can become actors or co-creators within this active pace called "interface"
Reconsidering interface in this light, so-called "direct manipulation" interfaces require physical tools (mouse, keyboard) to function as intermediaries between human action and the computer, so some level of cognitive abstraction is still involved. (Does it really make sense to push the mouse forward on a horizontal plane in order to move the on-screen pointer "up" on a vertical one?) The manipulation in traditional gus is not really direct, but indirect. It is only "direct" relative to the highly indirect command-line, punch-card, and manual-switch interfaces tha preceded it
Despite those limitations, researchers
mcluding Donald Norman, formerly of Apple's Human Interface Group) have argued that the process of using direct manipulation interfaces can induce a Jeeling of direct engagement motion is problematic but direct engagement motion is problemanc, be described direct engagemer can be described generally as a positive,
satisfying experience. Yet, in observing this phenomenon, the researchers write: "Although we believe this feeling of direct engagement to be of critical importance, in fact, we know little about the actual requirements for producing it" (Hutchins et al. 1986).
I believe that we can answer this enormous question - how can we engage people? - by merging Laurel's conception of interface with sychological research on attention, emotion, and "interface," in the pre-computing sense of the term.

Psychological

I hhould not write off so-called "direct manipulation" interfaces so quickly. There are scores of such interfaces that are, in fact, highly engaging, and can maintain a user's interest for hours at a time (e.g., computer games, web browsers, email and other messaging programs). But even the simplest these applications still involves some degree of learning, since each involves abstractions ("indirect manipulation"). Users must explore the interface long enough to develop a menta model of how it works, what the system is doing (or not), what kinds of input it can
accept, and what ranges of output it may accept, and what ranges of output it may produce. This exploratory process may take only a few minutes or seconds, but it is always
there. We are not born understanding how to surf the web.
What if there were an entirely different model of interface, based on true "direc manipulation" yet without any learning curve whatsoever? Such an interface would eliminate conceptual abstractions (interface elements) simply by catering only to known human abilities. This new kind of interface would be intuitive and instantly engaging, since users would "just know" how to interact
with it - no new learning required. Of course, with it - no new learning required. Of course,
the potential applications for such an interface might also be limited to performing actions that we already "know"" For example, a high skilled action such as producing technical
shematics may fall outside of the realm of possibility for a strictly intuitive interface. Nonetheless, the idea is still worth exploring Camille Utterback uses video "mirroing in many of her projects. The mirrored image may show the user's likenes, yet also be augmented with additional visual or algorithmic interpretations of the image. During a recent talk at UC Berkeley, Utterback observed that people intuitively understand how to move and interact with mirrored video, by virtue of their experience in the physical world (2009)
Yet psychological research indicates that our familiarity with mirroring is not learned through life experiences such as using real mirrors, but is biologically innate. In a paper and child development psychologist Malcolm Pines observes that "human infants start reacting to a mirror at 18 weeks and at 4 weeks, over 60 percent of them try to look at the back of a small mirror, as if looking for the other infant, or kiss the mirror but do not seem to recognize themselves. Laughter was reported to be elicited by a mirror image at weeks" ${ }^{\text {(}}$ (1985). Visual mirroring is a powerful force very early in our lives
An infant's response to an actual mirror is interesting, but more relevant is the role of interpersonal mirroring, especially that

Social

(and easily observec) that parents reffect their infant's behavior back to the child.

By speaking to infants in baby talk with its higher pitch, repetitive phrases, and the free use of nonsemse uterances, by the use of exaggerated facial expressio which offer clear patterns to state and offerings of joy greeting approval, encouragement, or even of amused disapproval, the parent acts as a benign reflection to the baby of it presence within the context of a social relationship. (Pines 1985)
Called biological mirroring, because it is observed in cultures worldwide, this process is a near-universal means of communicating with a pre-verbal infant. Quite literally, our very first social interactions are of other people mirroring our own action
For the infant, parental mirroring sets he groundwork for more complex social individuation, of illustrating to the infant that she is an individual being. Through that she is an individual being. Through
imitative behavior, the parent acts "as a psychobiological mirror, an active partner in the infant's developing capacity for social relations and the beginning awareness of selfrepresentation" (Pines 1985).

By reflecting the infant's behavior, with minor modifications, parents use the interaction to further engage the child, and to instruct, encouraging positive behaviors and discouraging negative ones. When performing his process of augmented reflection, "the motevelop and to sustain a more meaningful bloge with her baby and, furthermore to facilitate the development of a more deliber mitation by the baby. The mother's answerie esture provides the infant with an interestholding event which is temporarily contingent pon his own performance of a similar event ${ }^{-1}$ Pines 1985, italics original).
In other words, the parent-infant interface is an ongoing feedback loop, a two-way communication between the learner and the learned. Just as with a dynamic, computational system, the output does not directly mirror the input. Kather, hhe parent performs them back, but slightly modified so hat the difference is infused with instruction. This modification of the performance also serves as an "interest-holding event" - a method of sustaining engagement. Augmented mirroring, then, is a means of both engagement and communication, and it is fundamental to the human experience. "Using mirror," "mirroring," and "reflecting" are not learned skills, but biologically innate and ecessary human abilitie

Traditional interface models imagine a layer hat mediates between one user and one ystem. But in the context of interactive video installations, there is potential for multiple concurrent users. It is essential, then, to onsider not just a one-to-one, user/system etwern tween the
h her recent lecture, Utterback related her observations on how video installations are always multi-user experiences. Any work
using video as the input medium automatically becomes social. Even if intended for only one user, it must be designed to accommodate more, simply due to the practical consideration hat multiple people can enter the visual space in front of the camera. Utterback's work takes dvantage of the inherently social nature of teractive video art. Many of her systems rack multiple participants, and encourage collaborative interactions. For example niled 5 generates paint-like strokes on-screen rokes cross paths, they change form, and grow out in new directions. The end result isual output that cannot be invoked by one user exploring alone.
In a single-user system, the user can focus ntirely on his relationship with the system. Having multiple users, though, requires that social negotiation occur alongside each individual's relationship with the system. Traditional, direct manipulation GuIs ar not designed to accommodate more than ne user at a time. As a resul, atempts

one machine typically requires taking turns e.g., "Okay, now you take the mouse effectively acknowledging the interfaces iser A successful interactive video piece will acknowledge each user's participation and accommodate them gracefully
Any such installation will
Any such installation will occupy a space,
just as a mirror occupies a space, whether a bathroom or a hallway. People within the space (in view of the video camera) become active participants, since their actions influence the output of the system. But what about the people outside the space, looking in Or the people moving into or out of the space What do the people in these transitory space ontribute to the interface.
function as observers - third parties not yet interacting with the system, yet able to users These observers are not influencing the system directly but they may influnce the active users either divelly ber batio instructions, suggesting actions) or indirectly (e.g., simply by observing, making the users (e.g., simply by observing, making the use
self-conscious. In that liminal space, the observers are unwitting participants in a larger stage that encompasses the system, its users, and the observers themselves. This add complexity to the interactive dynamic -it is no longer just an interface between a system and a user (or multiple users). We must also account for additional "interfaces" between the uses ard

Participants experiencing Practicic in San Francisco.
ven one-to-many, but many-to-man If this larger stage is itseff observed, it performance art, in which the participants performance art, in which the participants
are wholly unaware that they are playing role scripted for them in advance by the systems designer. Laurel's theatrical interface offers many opportunities for understanding how to consciously craft these roles, since her mode considers each individual to be an "actor" o
In my first year at DMI, I wrote a research paper on flash mobs, a phenomenon derived from the "happenings" of the 1960s and whose ecalor considered it both performance art participants (or "performers") were unaware that they were acting out roles on a predefined stage. Each individual was simply responding to instructions and making decisions informed by the social context, yet that context was very deliberately structured ("designed") in advance. But since these performances occur in public space, they are typically surrounde by and infiltrated with third-party observers who, in turn, become part of the show. So al the actors have varying levels of awareness and appreciation for the larger system at work but they are all en social coercion.

Medium

Reflecting on my past projects, my first and most obvious observation is that they share a common medium: the screen. Nearly all of m projects are screen-based, and use the mouse
or keyboard to take input. (A few print-only pieces are exceptions.) I haven't done any work with so-called tangible interfaces (although mice and keyboards are quite tangible and tactile), nor sensor-based input methods o haptic feedback.
This focus on screen-based work was born partly out of convenience, but also from my tits hard enough to explain "dyname medio"
 with distance sensors and hacked webcams? I thought that the familiarity of screen-based work would be more accessible to potential clients. Plus, it's easy to deploy a screen-based application on a large scale via the web - les so for physical objects and custom installation In terms of form, my early work was all black-and-white, beginning with my first projects in HyperCard. At dmi, too, I chose to work mostly in black-and-white (and gray for about six monis, whe Hearned the
dimension that I just couldn't handle on top of my other new learning. But eventually I got there, and studied how to work with color computationally. I now try to make my projects as colorful as possible (when appropriate, simply because colors tend to more engaging.
These reflections led to an insight that a project's medium or media must be considered in a more structured context. Every dynamic system employs a least hree media. one for the two and executes the rules of the system itself. In a traditional GuI, the mouse and itself. In a traditional GUI, the mouse and
keyboard serve as input media, the display is keyboard serve as input media, the display is executed by the software's logic on the cPu. Of course, this is an oversimplification, as networks, storage devices, and graphics card are also involved.)
One may argue that these final items - the software and central processing unit, or main chip in the computer - are invisible to the user, and, therefore, do not qualify as media. for the
anything, defines the range of possible inputs and outputs for any system Medium selection is critically important. If Picasso had used marble instead of paint, and Rodin opted for pastels over bronze casts, would they have created comparable maste pieces. Yes or no, their work would have been very different from the paintings and sculptures we know today
The decisions we make about which digital fools to use are just as important. If I will performing live music that has to be pitchDeta are probly my best bets For fluid interactive work on the web Flash, Flex any number of JavaScript libraries may fit the bill. When selecting an appropriate medium for our system, we need to consider what will work best with the desired input and output media, as well as our own technical abilities
and the timeline for the project.
For my purposes and skill level, Processing has been a great medium for developing and deploying projects. It's a free, opensource programming language for artist nd
can be posted to the web as a Java applet, or exported to a native program for Mac, Windows, or Linux. It uses a simplified syntax that makes programming simple visuals relatively easy, and it automatically tracks key instekes that are more diffeposition and keystrokes well-suited for data visualization projects, since it has extensive built-in support for capturing and processing data from a variety of sources.
I was introduced to Processing during my first semester at DMI, when I bought the book Processing by Ben Fry and Casey Reas, the programs co-creators. Learning to program seemed the only way to employ true interactivity in my projects. So I sat down with the book, and slowly taught myself how wy fist finished preject, an interface that positions abstract shapes in response to mouse movements. For me the learning process was movements. For me, the learning process was
a smooth one, since the Fry and Reas book related many elements back to fundamental concepts of systems design.
While I sometimes hate to admit it, I truly am a "systems guy" and I've always loved systems thinking. My undergraduate major was a self-designed exploration of "environmental theory" - essentially a study of how social and biological forces (like religion and ecology, itself a systems-based stife, I have all kinds of syster.
do everything from washing the dishes to
reminding me to pay the rent. When working, I would rather learn a new tool and figure out how to incorporate it into my workflow than perform a task in a less efficient way.
So Processing fits the way I already think. ther, you simply define what one circle other, you simply define what one circle looks
like and how it behaves. Then you make ten, a like and how it behaves. Then you make ten, a
hundred, or thousands of them, and let them hundred, or thousands of them, and let the
interact with each other. That is a systems approach: to watch complexity emerge from simple rules.
Processing is also intended to be a sketching environment - like pencil and paper, but with code. Everything about the interface is designed to help you quickly write code and execute it as quickly and often as possible. Draw a line, done. Make it thicker, done. Make it a curve, colorize it, adjust the
transparency, and so on. Sketching with code in Processing is analogous to x ng waper you starst rough, and then gradually hone in your final image through numerous miniscule refinements.
Upon entering my thesis year, I continued to use Processing for two reasons. First, because of my growing familiarity with its language. Second, because I had an extensive amount of code written that I could re-use which would speed my development time for future projects. Spending less time on coding meant I would have more time for conceptual work, user research, and design refinements.

S

\sim

Data

I've long understood data intuitively: what "data" are, and how it (or they) can be captured, stored, and manipulated. But once I started using Processing, I had to dig deeper and build some structure around that vague intuitive sense. Programming requir explicitness. Computers are truy binary: they perceive only this or that, and nothing
else. It is only because of the tremendous speed with which they move between this and that that complexity arises, and thus, the perceived magic of computation. At their root, computers are very simple machines with only rudimentary abilities to receive instructions.
To program - to write in the
computer's language - one has to think
on the computer's own terms, especially
where data are concerned. A number must be identified as a specific kind of number (whole number or decimal point). A chunk of text must be identified as a specific kind of text (one single character or a sequence of many characters.) The format and structur of the data must be defined before the data hemselves are even known.
My relationship with data has evolved over the last few years as ' 've learned how
oo consider and document it explicitly. The to consider and document it explicitly. The own thinking when planning projects. I've gravitated toward this process and gained a great deal from it, although at times I worry it las kept my process and work too structured. There is certainly value in letting go and
reating more intuitively, but it's difficult or work with data that way. The content constrains the process.
Lev Manovich has argued that transcoding and transformation are both fundamental phenomena in new media (2002). After being reduced to ones and zeroes the lowest ny data can be adapted to any purpose. any data can be adapted to any purpose. An aller line on a chart, and mouse coordinates can be used to position a shape. To the machine, it doesn't matter where the data comes from - the market, the mouse, a video amera, or a song. They are all just numbers, and all numbers can be mathematically manipulated. My colleague Jason Bailey's
recent visualization projects exploit this
phenomenon in its most abstract form. Jason has taken a Miles Davis recording, captured the literal numeric values from the digital recording, and then interpreted those values in visual form. So the result is indeed a data visualization, although its data source is so fat abstracted from our aural experience of the musceivable mapping To me, the unexpected beauty that results only adds to its value. Yet this abstract mapping raises questions about human perception (What kinds of visualization are meaningful?) and the philosophical divide between art and design (Is this useful, or beautiful, or both?).

The process of giving visual form to data necessarily merges aesthetics with statistics, two traditions that rarely see eye to eye. So what constitutes a meaningful representation of data, and what is an artistic interpretation? When is each appropriate, and how can we achieve both at the same time
I spent the fall 2008 semester pursuing with Maneesh Agrawala, who recently received a MacArthur "genius grant" fellowship for his groundbreaking work in the field. I had already developed a few visualization projects of my own, including the iTunes Library Visualization, which represented songs on my computer as circles in 3D space.

Longer songs were larger circles, and they could be grouped and sorted in space by different attributes like genre or number of times played. The iTunes project generated great eye candy, but I quickly realized that cool visuals are not necessarily meaningful visuals. At Berkeley, my plan was to learn what makes a successtul visualization In the process, I built two interactive Trains Visualization represented Bay Area subway trains' arrival times on a map. The subway trains arrival times on a map. The
data was pulled from BART's website, so the data was pulled from BART's website, so the
visualization was real-time. As an experiment this project was invaluable, although my visual approach was not perceptually sound.

Stills from the iTunes Library Visualization project.

Users were confused about why the trains, represented by color-coded circles, would appear to be "off the tracks," displaying in the appear to be "off the tracks," displaying in the
middle of the bay, for example, or as far south as San Jose. The reason was that I made a as San Jose. The reason was that 1 made a
conscious decision that trains should not follow conscious decision that alignments, but instead display simply a certain distance away from the target station. Since all the trains were in motion at a constant speed, the distance between any train and its station represented the amount of time until it would arrive. My concept was that, perceptually, users could perceive the distance and the rate of motion, and from that deduce sense of how much time they had to run to reminng were also shewn x-screen) In any case this approach was neither visually clear or perceptually sound but it was a great or perceptually sound, but it was a great
chnical achievement for me, and a valuable ssson came with it: innovative designs are not necessarily successful designs.
My final project for the course, Relationship Iisualizer, was a visualization of networked relationships, for which I used my own elephone records. This project showed not just connections between "nodes" (phone numbers, in this case), but the frequency, direction, and duration of those connection actual telephone conversations. Professor

Agrawala was impressed by the originality of my concept and design, but warned me to be careful with using so much motion. We had spent a few weeks of class on human visual perception, and while humans are great at perception, and while humans are great at
identifying the presence of motion, we're not idenifyying the presence of motion, we 're not
able to track the motion of more than a few visual objects at once. Therefore, a screen full of moving objects is, perceptually, a big mess - visually stimulating and beautiful, perhaps but not meaningful (or, not a visualization from which we are able to extract meaningful connections about the data). Following that feedback, I kept the existing motion, but adde w whor to clearly whether in motion or not This is one of the most-visited on my website, which I think testifies to the need for tools to help us make sense of networked information. nake sense of networked information.
During his summer 2009 course on sound design, Colin Owens and I started talking about how to pair data visualization with audio. How could sound be used to reinforce and augment visual representations of data? I immediately imagined a swarm of data points loating around in space, and position-based audio that would indicate where the points were in pace, lis he har

Stills from Audible Particles.

Aural Data Plot's optional visual representation of the lata points being played.
imple sketch with particles that are attracted to and orbit the mouse. A corresponding packground hiss follows the particles from lef Hss is louder on the right, and so on
Next, Colin challenged me to take it a tep further and consider how to present data o a blind user. If visulization was not an attion, what about an auralization? I created Aural Data Plot, which takes x / y values and ayys through them, like musical notes. It's sentially just the audible version of a simple chart, with left/right panning indicating ex position, and pitch indicating the y valu Oogether, these projects started me thinking
about expressing data through many output hannels, visual and otherwise.
With each of these projects, my desig Wocess has evolved. I remember my first. mapping I had designed for my "you are here" roject was criticized as not meaningful. I ook that to heart, and realized that Ineeded consider not only the visual elements of my choice, but all the visual elements that other would perceive. Position is important, but so e color, shape, size, relationship, motion verything. With each project, I get better at adapting the design accordingly.

Search Explorer
In August of 2006, AOL released three month worth of search queries entered on its website. The data was released to the academic community for research purposes. Although the records were "anonymized" in the sense that email addresses and usernames were mitted, researchers quickly discovered that they could identify the real people behind each randomly generated user ID number, simply by reading the content of the queries themselves. oit turns out that we can be identified (and erhaps defined, to a degree) by what we values and desires.
Although a handful of websites offer limited ccess to the ou search websites offer limern access to the AoL search data (aolstalker.co he most part it remains inaccessible to the general public, archived in massive text files. I wanted to take this fascinating content and reveal it in an interactive, visual format. I wanted to create a tool that would encourage free-form exploration of these queries and hel people visualize meaningful patterns across them. From the beginning, I was trying to reate a deliberately voyeuristic experience That was the dream, anyway, but the oject fell short. Due to all kinds of technica complications I could not have foreseen, I

didn't make as much progress as I had process of trying, both in terms of designing process of trying, both in terms of designing
the interface as well as developing its the interface as well as
back-end functionality.

The initial problem was the data set itself. Until this point, the largest data set I had worked with was a dictionary of English words a few thousand lines long. The Aol data set, though, was $21,011,340$ lines long - one lin for each search query - for a total of 2.2 gigabytes of data. Plus, each line was not just a word or two, but contained multiple data points: the user id number and the query text,
plus the selected search result (i.e., what URL

the user clicked on after making the search) nd date and time of the query. There were $0,154,742$ unique queries, and $19,442,629$ user click-throughs. The sheer volume of data
presented an issue of scale: How could I store and access so much information?
I set up a MySQL database, and then tried to import the aol data. And it took forever. Or at least it felt like forever. I timed the import process, and the database was taking in about 5 megabytes per minute. At that rate, it would take 7.5 hours to import the whole thing. At that point, I had to question the scale of ny ambini. Maybe I could illustrate the encept without using all 21 million querie.

So I limited my database to only the first 15 megabytes of data, a mere 0.6% of the whole, megabytes of data, a mere 0.6% of the
with only 251,032 queries from 1,582 wifferent users.
Even with "only" a quarter-million
Even with "only" a quarter-milion
queries, I found that my interface was
painfully slow. When clicking the "new user" button, for example, it could take the system bout 10 seconds to locate all of that user's ecords. Then, in order to visualize how popular certain search terms were across all users, the system would count how man imes each individual query appeared in the database. "Sex" is popular, of course, and is "gooogle") That second round of database

work could take a full minute to complete. In the meantime, my interface was just frozen, apparently crashed, and totally unusable. It's not a pleasant experience when an interface stops responding for anything longer than about 100 milliseconds. When that happens, it's time to introduce threading, a programming technique that separates chunks of code into different processes. So, for this project, Ilearned how to compartmentalize all of the database operations into their own "threads," so the ui could continue, smooth as silk. (Think of all the Flash "loading..." loadin." nimation is one thad, while

the hard work is happening in another thread. This was my first multi-threaded interface and, although the technical side wasn't too complex, it required me to think differently bout designing the interface. What should processes complete? How is progress communicated to the user?
Assuming I could get all the technical bits working, how should I visualize this content anyway? The biggest problem with this project was that this important question was nearly left until the end, since I let the techicad issues occupy so mor finy ime. I
with the user id number at center, surrounded by the associated queries moving around in gentle orbit. Although this didn't convey any as date and timaco abour the queres sut represented: that the identity of the individut was somehow collectively made up of his or her questions and desires. I I wanted to raise questions about identity and privacy in a time when we routinely ent very personal information into ostensibly impersonal search engines. Although the project wasn't completely successful, I'm still interested in revealing personal information that we expect will always remain hidden. Since then, I've started working on a project that listens to network traffic, extracting any passwords that happen to pass by. It will be visible for others to see. isible for others to see
Searthe meantime, we can learn a lot from Search Explorer about working with large data
sets. In order to keep the interface responsive, sets. In order to keep the interface resp
I had to limit the scope of the content Thad to limit the scope of the content
being used. A friend whose occupation maximizing efficiency in enormous data set advised that, while some streamlining could be done, it would require more technical experience than I have, and would not bring that much benefit. At a certain point, technical limitations force design changes. So when embarking on a data-heavy project, we the structure and size of th data in mind.

In my art history class at Vassar, we once visited the art museum, where there was an installation by Sol LeWitt. Only, he hadn't done the installation himself - he had "merely" provided instructions to the museum,
which Vassar students then executed. The which Vassar students then executed. The result was an array of criscrossing strings tied
to nails, placed at semi-random points along a wall. At the time, this was presented to us as a great work of conceptual art (which it as a great work of conceptual art (which it
was), but today I think of it in terms of desig wass, but today I think of it in terms of design
systems. LeWitt had composed a set of rules, systems. Letitt had composed a set of rules,
thereby defining the scope and parameters of the piece. Students had simply carried out his instructions (and, as a result, only LeWitt's name appeared on the placard adjacent to the work). On a different day, another group of students, faculty, or really anyone could have executed LeWitt's instructions, with a simila result. Although the work wasn't visually sense The students were just his medium sef execution the computer carrying out the designer's instructions.
I now consider myself a "systems designer." I now consider myself a "systems designe "
Part of why I was drawn to Processing in the first place was that I wanted to write my own rules, and watch the computer carry them out in cooperation with the user. The rules are fixed, but they leave room for user input, so the end expression or output of the system is different every time, within certain constraints, depending on who uses it and how they use it. Casey Reas, one of the co-authors of Processing, gave a brief talk at the start of
a workshop I taught. In it, he discussed his
process, and explained how all of his works start as rules written in plain English, like LeWitt's piece. But Reas asks the computer, not undergraduates, to execute his instructions (Reas 2009). The main advantage of this, obviously, is speed. Iterations that would finish in seconds. With this speed emerges complexity. Reas's visuals sppear very organic and natural despite the simple rules and logic underpinning them
underpinning them.
Both Reas's and LeWitt's works, however do not change in response to their observers. LeWitt's pieces are static. Reas's are, for the most part, dynamic, but not interactive. My challenge is to design interactive systems that are accessible, meaningful, and engaging. Anything programmed is a system, but not every system is interesting or valuable. When designing interactions, we must always consider the ongoing feedback loop betwe users and system. User input is captured, processed, and responded to with output. Tha
output, in turn, initiates a response from the output, in turn, initiates a response from the user, and so on. Of course, these events do
not occur sequentially, with each party taking turns; the interactions, hopefully, are much more fluid than that, with each party actively influencing, co-creating, and collaborating with the other, moment to moment.

suggestiveness
bobsled

bobsled

Narrative

During my fourth semester at DMI, 1 stopped obsessing about data visualization and immersed myself in narrative. I had suffered too many blank stares when sharing my visualization projects with others - I had learned that visualization can engage people heye caye, bun herto har has to be meaningful to them as individuals. Narrative was my ticket to making engaging projects that would live on in people's projects that would live on in people's
imaginations even after the experienc had ended.
I studied "non-linear narrative," and realized I'd created such a thing long ago: m early experiments in HyperCard were choose your-own-adventure-style narratives, albeit simple ones. Clicking on different parts of the screen would perform actions and move you to other parts of the imagined world. It was like the early CD-ROM game Myst, but with hand

Dictionary Words
I also remembered my dictionary experimen, from my second semester at dmi. It was a gray screen, with one randomly selected word shown at center. The word would fade out to gray, only to be replaced by a new word, which would fade in. It was simple, yet hypnotic. People responded to it and searched for meaningful associations between the words. I expanded on that project by adding a
second word. Now two randomly selected
words would appear and disappear at once (such as "nourish opera" or telecommuting aphid"). This version was an even greater hit. It was fun to watch the unexpected, often silly word combinations. Of course, the word pairings werent intrinsicaly hamorous, bu me a taste of the power of our ability to create meaning out of random data elements
Around this time I was inenced to writings of film theorist Edward Branigan, who posits that narrative is more process than product. Branigan defines narrative as "a fundamental way of organizing data" (1992). Seen in this way, narrative no longer represents a static composition, but
a perceptual activity that organizes data into a special pattern which represent and explains experience... Thus the word "narrative" may refer to either the product of storytelling/comprehending This view of narrative as process is essential to understanding how data-driven, non-linear, non-"composed" works like Dictionary Words can be understood to have successful narrative elements. Users may or may not perceive patterns when being shown empirically random stimuli. So the ideal data-driven work would be consciously designed to ensure that a narrative thread is perceived, even when the data behind it are essentially random. The primary challenge of the design process is to avoid presenting what Branigan calls a "catalogue" - a collection of meaningless, unconnected chunks of data.

This agrees with philosopher John Dewey's view, when he writes that "to perceive, a
beholder must create his own experience" beholder must create his own experience"
(1979). The creator may assemble the work with specific narrative goals in mind, but those goals may or may not be fulfilled by the users, whose interpretation of the
piece is informed by their prior experiences,
background knowledge, cultural contexts,
and predispositions. Narrative and meaning, like beauty, are in the eye and mind of the beholder.
Research on visual perception by Fritz Heider and Mary-Ann Simmel helps people interpret ostensibly non-naw
elements e. . g , unnamed circles, triangles
and lines "moving" around each other)
and lines "moving" around each other)
as fully narrativized characters, complete as fully narrativized characters, complete
with motivations, personalities, triumphs and tragedies (1944). Later research by psychologist Albert Michotte examined visual perception's role in perceived or attributed causality, in which people interpret events as being related and causal (or not), based purely on visual attributes of size and motion changing over time (1962).

happening	upbraiding
spasms	businessman
wiggle	tablecloth
reassuring	fubber
credible	outgrow
frantic	doubles
impassable	fuselage
microwaves	

40

discovery

evicted

poclivities

fluffing

pentasyllabic

wooer

Questions \& Answers
I finally had a narrative framework that was applicable to dynamic systems. So I began applicable to dynamic systems. so
another project designed to exploit it.
another project designed to exploit it.
Asking a question reveals information
Asking a question reveals information
about oneself. In the process of asking, we about oneself. In the process of asking, we
give clues to our interests, personalities, and concerns. What do we want to know, and why? What can be inferred about our identities from our questions alone? How we respond to others' questions, too, is revealing.
Ouestions ๕ Answers is designed to
encourage exploration of the vast range of questions that people ask (and answer) onlin Question and answer data from Yahoo! presented in a fluid, minimalist interface allowing the user to focus on the content and pursue the subjects that interest him or her. Only the arrow keys are used to navigate. (there is no mouse input), and content is arranged in a virtual space with questio above and answers below. By "moving" left, right, up, and down, users can explore tha question any order, whether sequentially question, answer, question, answer - or not. For example, users could ignore the question and review only answers (which are often interesting or entertaining without the context of the original question).

By going up, the user accesses the top-level menu, which lists all of Yahoo! Answers' main subject categories, plus two additional options: Random, which retrieves content across all categories, and Search. Below the Search option is a space where text may be entered for a custom query. After text has been entered, moving down again reveals the content found for that query.

The interface is designed to "get out of he way" of the content. Content is shown front and center, and the only other interface elements (just four arrows and one cursor)
are presented as unobtrusively as possible. The typeface Monaco was selected for its plain appearance and its strong, even strokes, which make it very legible on-screen. As a monospaced typeface, Monaco connotes early computer terminal interfaces and raw, undecorated data. Very little processing is done to "clean up" the content, no styles (bold, italic, etc.) are used, and the original author's capitalization, punctuation, and phrasing are all preserved.

Color is used to provide texture and offer a more visually engaging experience. The text of each Yahoo! Answers category (e.g., "Business \& Finance") is used to retrieve the most relevant colors from ColourLovers, an onlin community of people who name and rate colors. Each category is then assigned a palette of colors, and navigating between categories cycles the background and foreground color through the appropriate palette. Although most users won't be aware of this back-end functionality, the palettes help give each topic category a distinct feel when, for example, the "Business" section uses stely blues and "Environment" reveals shades of green. Also, since it would be impossible to predict which
color values are returned from ColourLovers,
n algorithm is used to ensure enough visual contrast between the background and foreground, so that text is always legible. The intent with this project was to presen would encourage exploration and facilitate would encourage exploration and facilitate the narrative-creation process in users. people enjoyed it (especially when using the search function), but overall, Questions Answers was nowhere near as consistently engaging as the far simpler, more reductionist Dictionary Words. Although Branigan advises against presenting a mere "catalogue" of data, seems, in this case, that the smaller and more random the chunks of data, the more the piece is open to interpretation.

If a viewer/user/participant is not engaged
with a project, then they won't experience it. If
a design doesn't draw them in, then the design
a design doesn't draw them in, then the design
isn't working. With each of my thesis projects, isn't working. With each of my thesis projects,
I was determined to offer participants a true I was determined to offer participants a truc
experience, in Dewey's sense of the term - a experience, in Devey's semorable interaction with definitive closure that participants would reflect on long after experiences generally and the creation of " $a n$ experience," meaning one that
has a unity that gives it is name, the
meal, that storm, that rupture of
friendship. The existence of this unity is constituted by a single quality that pervades the entire experience in spite of the variation of its constituent parts. (1979, italics original)
If dynamic work can maintain one meaningfully unifying quality, despite being driven by potentially random, non-meanin Dewey, it may constitute an experience, in experiencer found meaning within it. But in order to stand out as an experience, it also order to stand out
needs closure, for
...we have an experience when the
material experienced runs its course
fulfillment... A piece of work is finished
in a way that is satisfactory; a problem
receives its solution; a game is played
through; a situation... is so rounded out that its close is a consummation and not a cessation. (1979, italics original) engagement is to design methods for
the experience, even when the input data ar andom and therefore unpredictable.
Many of my past data visualization project used interesting content, but the presentation wasn't engaging. I had tried to pull peop
in with a narrative hook, but that had proven extraordinarily difficult to execute well. Reflecting on which projects had reeled people in - and that, anecdotally, qualified people in - and that, aneccotatly, qualified
as memorable experiences - I recalled my Gesture Project and ASCII Photo Booth. The Gesture Project captured the user's motion and mirrored it with spinning, colorful discs, while the Photo Booth reflected the users back on themselves, and even printed a hard copy - physical evidence that the experience had occurred and completed. Both of these projects used video as the primary input, and in both cases, I was struck by how entranced people were with watching themselves on-screen. Thus
began my interest in mirroring as a means began my intere
I decided that my thesis projects, too, would use some form of mirroring since it so, would use some form of mirroring, since it so quickly
establishes a connection between the user and the system. The instant that people see their own reflections, they are engaged, interested, and participating. There is no mouse to click, no interface structure to learn before the interaction begins - it starts as soon as the participant enters the space and passes in front of the camera. Holding up a digital mirror is all you need to do to grab someone's attention. (Keeping that attention long enough to sustain
engagement, however, is another matter.)

The Gesture Project is a simple concept that
produces beautifully complex results. A grid
of red circles covers the display
of red circles covers the display, and a video camera points outward, toward participants. As participants move, the system detects thei Where there is more motion, the discs spi faster. As they rotate, the discs change hue, faster. As they rotate, the discs change hue,
gradually cycling through the rainbow. So, gradualily cycling through the rainbow. So,
over time, visual hot spots emerge, revealing patterns in the history of motion. The entire grid automatically resets every minute, so
participants can begin again with a clean slate. While this project didn't employ
literal, visual mirroring of participants, its visualization was coupled tightly enough to their motion that participants felt a direc connection to the system. I remember introducing the project in class, and being
surprised by the extremely positive response. surprised by the extremely positive response.
People loved it, both as direct participants in front of the camera and as observers. The colors and rotations were visually attractive, and the perceived physical connection was, practically addictive. Even now, every time I show this project to someone new, they inevitably call out "Oh!" in excitement, upon realizing that the discs are responding to them.

The ASCII Photo Booth was, far and away, of my most successful projects at DMI, and it wasn't even done for a class. In December of 2007, at the conclusion of my first semest Colin Owens announced that he was organizing an ASCII art show, to be held in
February. I had just begun teaching myself February. I had just begun teaching myself Processing an
for the show.

Background - Asciu stands for American Standard Code for Information Interchange the official name of the first widely adopted standard for binary encoding of human-
readable text characters. It supports only
characters from the Roman alphabet, plu
basic punctuation, which is all that the
Americans who first created it needed. The
small amounts of memory in early computers
prevented the inclusion of any characters not
prevented the inclusion of any characters not
Later, other encoding standards, such as ans Later, other encoding standards, such as ANSI
and Unicode, were developed to offer support for many more characters, so one encoding could support letters from many different alphabets.)
ASCII art - visual work made of only these plain text characters - originated with the earliest terminal systems, before computers had true graphical capabilities. Engineers the only people who used computers at that point) needed to document and communicate technical designs, and they ingeniously appropriated basic keyboard characters intended only for punctuation such as: / / \} $\\{]\} * * \wedge<\text { and }>\text {. Using these characters, }} \end{array}$
hey could draw sime
schematics with lines, boxes, and labels. Being
human, those engineers eventually realized that ASCII could be used to create nontechnical images with strictly creative, and
often humorous, elements. Today so-called
often tion lous, eleme. Poday, so-called
uses of text characters as visual imagery. AscII art now is a creative form in its own right with a semi-underground cult following. AsciI, they will recognize its visual forms right away. With the computing power and graphical abilities of today's machines, we can now create dynamic, generative Asciu art was originally done manually.
Concept - One of Processirn projects takes a video input and converts it, in in-ime, to an Ascir art image. Dark pixel with greater visual density (suracters E), while lighter pixels are assigned less-dens E), while lighter pixels are assigned tess-den
characters $(i$, , , and $)$. A pure white pixel of video, of course, is represented with a space character (). By using a monospaced typeface, as found on early terminal systems it is easy enough to create a grid of character that corresponds exactly to the input image. So, a video image of 320 by 240 pixels can be translated into an AsciI grid of 320 by 240 characters. Each line of text would be 30 characters acros, and monosp.

I was taken with Processing's Ascir video sketch, and decided immediately to adapt it to create an Ascur photo booth, an interactive installation in which participants would not only see themselves interpreted in plain text form, but could walk away with a hard copy
in-hand. It would be the retro-digital, moderi adaptation of the classically analog, coin operated, Polaroid photo booth. My goals with the project were first, to create an enger the project were, first, to create an engaging
and fun experience, and, second, to learn how to create an interactive art installation with Processing along the way.

Process - I began by outtining each componen that would need to work in the final piece: 1. Capture video image with camera
2. Convert video image to Ascir
3. Output AscII image to display
4. Take user input from button (to signa

Take user input from button (to sign
when to take the picture)
Count down on-screen before "taking"
the photograph
Generate and save AsciI image
7. Send image to printer

In addition, I needed a physical space designated for participants to pose in front of Looking back, it's clear that the project involved a great deal of technical complexity, especially for my very first proje in Processing and first-ever interactive installation. But ignorance kept at bay any
andieties that would have arisen otherwise, anxieties that would have arisen otherwise and I forged ahead, spending many hours over
and a clear vision in my head. handled by the example Ascir video project included with Processing, but I made several modifications to achieve a simpler, cleaner rendering. Also, I wanted the video to occupy the full screen (not just a small window, and a great deal about how computers interpret video as arrays of pixels.
For step 4, I wanted a plain-and-simple button: ideally a spring-loaded, red plastic button with some tactile feedback - a nice, lean "click" sound would have been nice. oday, 1 would feel comfortable acquiring communicate with Processing via to Ar Arduino board or some other hardware input, but iven the timeframe for this project and my mited experience, I opted for the simplest input solution: a one-button mouse. This compromise ended up being technically successful, although it detracted from the retro aesthetic I was trying to capture. (Analog photo booths don't have mice, at least not electronic ones.) Any computer user today is familiar with mice, and recognizes that they are used for both motion (left, right, ap and down) as well as selection (clicking
mechanism, since it would be underutilized in this context, but it was faster to implement. Step 5 was simple enough to develop. When he mouse was clicked, a white box masked a rip along the bottom of the display, in which would appear:

3... $3 . .2$ 3

At that point, the system "froze" the screen and saved the current frame of video, converted into AsciI (step 6). So far, so good. ow how was I going to get the image fro he screen into the user's hands?
. Pexniecc, as Processing does rinter. Processing could only export the mage, after which point it was up to me to end it to the printer, but how to do that? I ended up writing an AppleScript that would watch" a designated folder for any new images saved there. As soon as it detected a new file, it would open and print it. So Processing just had to create and save the images, and my script was in charge of printing them out.
At the time, I had an inkjet photo printer, wanted to create. I needed people to be \mathbf{F}

to pick up their printed artwork immediatel after the photo was taken - no waiting necessary. Only a laser printer would be
fast enough to output a full page in just a fast enough to output a fulf page in just a
few seconds. After failing to scrounge up something compatible (and free) from MassArt's computer labs, I found a great deal on a brand new laser printer at MicroCenter.

Now I had the speed that I wanted, but I wasn't satisfied with the quality of the image. At first, I tried simply capturing the screen image and sending that to the printer, but the output was blocky and pixelated - just as it appeared on-screen. Again, unaware of the complexity I was about to introduce, I decided to export my Asciu art not as a bitmap file, but
as a vector-based PDF. For technical reasons,
hat turned out to be a non-trivial task, and mvolved taking the AsciI text that appeared -screen and generating a completely -re imase, and then saving it to disk. But once I got it to work, it was beautiful: high-resolution AsCI rt - possibly a contradiction in terms art - possibly a contradiction in terms -
output to paper in just seconds at 600 dpi. loved using new, "hi-fi" technology to proces and present an old, "lo-fi" art form. Also, for self-promotion purposes, I included a footer with my name and website address on every print-out.
On the afternoon of February 23, 2008, I Ouled my new printer February 23, 2008, 1 17-inch crT display my Sisht Mini, an old buse over to the Doran Gallery and bea
tting up. Without much time, materials, carpentry skills, the final, physical installation I would have liked bu I did marage to designate a defined space by positioning esignate a defined space by positioning white display podiums around the work. Just
as with an analog photo booth, it was clear as with an analog photo booth, it was clear space, either being photographed or merely observing the process. The display and video camera were positioned about six feet way from the white wall, where a chair was placed. In order to see the display clearly, then participants had to sit in the chair between the display and the wall - so the only clear view a display was from directly in front of it

Experience - The ASCII Photo Booth took 67 photos over the course of the evening, all of which I have archived, and some of which, I hope, made it home with their subjects. (I like oo think that at least one of those dynamically generated, original artw
refrigerator somewhere.
It was lots of fun to watch people use the photo booth, mostly because they were having so much fun watching themselves. Most people understood it right away, and even people who are normally camera-shy were comfortable admiring ASCII rendering of themselves. My first user observation, love to look at themselves. The fact that the mage was augmented in a unique way kept image was augmented in a unique way kep
people engaged and interested. Watching people engaged and interested. Watching
straight video of oneself is not as interesting a straight video of oneseff ir not a s interesting how a system reacts to one's motion
explen and recalculates its visual representation on-the-fly. This augmented reflection was highly engaging.
I also observed that the best images were created by people who took time to experimen
with the system. They would lean with the system. They would lean in closer to he camera, then farther back, watching the
motion. A handful of participants spent only a few seconds with the piece, but the peop who lingered were rewarded with better
images. This was partly due to the camera automatic exposure, which compensated for changes in light levels as people moved in and out of the frame. Thus, the final images were sharpest when subjects sat completely still before and during the exposure. That felt appropriate, given that AsciI originates from a time when computers were much slower and unable to process images at all. As with early photography, perhaps it should take time for although this quality could be considered a dain I I liked the ide that pered invested more time and energy were rewarded with higher quality output - a theme I have carried forward into later projects.
As an added bonus, although I was hallexpecting the application to crash at some point during the show, it never did.

Conclusion - Generally speaking, the project was successful because it met both my goals: I learned a lot about Processing, and the end result was an engaging and fun experienc,
faces. Were I to ever resurrect the ASCII Pho Booth, however, I would get some help with the physical construction, and build a space resembling a traditional photo booth, with what I walls and a red curtain. I would use wha I ve learned about hardware integration like system-controlled flash even incorporate is not technically necessary, I consider it an essential component of the analog photo booth essential component of the analog photo boo experience.) The laser printer, too, could be concealed within the booth, and a system devised so the print-out could be deposited is paper, a non-standard size photo paper could paper, a non-standard size photo paper could
be used, to better match the strip of images output by a traditional photo booth. In short, I would like to remove al indications of the project's digital core excep for the asciu characters themselves. The ideal installation would take advantage of widespread familiarity with photo booths physical form to make users completely comfortable within the space. Then, the use of Ascir becomes a clever surprise, the only outstanding element in an otherwis commonplace interactive object.

Mirroring may be a highly effective tool for triggering immediate engagement, but that engagement may be fleeting if not sustained by other means.
In my experience, sustaining engagement is best accomplished by establishing a sense of anthicpation. This can be done by about to happen next. This requires system to be somewhat secretive. To maintain engagement, we must provide hints, but complete answers. not just static mockups. I had just begun delving into Processing, and chose it as my tool. Next, I decided to use the mouse as my input device. The fluid, two-dimensional motion of the mouse seemed better suited to
a study of anticipation than my alternative: a study of anticipation than my alternative: the keyboard, with its discrete, on/off, binary position, motion, direction, and velocity - all concepts that connected with my traditional concepts that connected with my traditional
understanding of anticipation. Position: Where understanding of anticipation. Position: Where
am I now? Direction: Where am I headed? Motion: How fast am I moving? Velocity: At this rate, when will the event I am waiting for occur?
Of course, most of the thinking above was developed only in retrospect. At the time, it was really just an intuitive decision to use the mouse. It simply made sense, and connected with the project's theme in ways I couldn't articulate at the time.

The first studio assignment in my second semester at DMI (spring of 2008) was to produce a response to this theme of anticipation. At first, I was stymied. How could one indicate that something was about to happen before it actually happened? How could I hint at what during those moments of anticipation? If the end result was revealed too soon, then the anticipatory moments would fall flat. With foreseen conclusion, there would be nothing foreseen conclusion, there would be nothing anticipate.
I decided that this concept was too amorphous to study in the abstract. I needed

In any case, I began my experiment by using Processing to connect on-screen events with the mouse's position. I had the computer draw simple shapes - circles, squares, triangles - that followed the mouse around. Interesting, but there was no goal, no ill this

I defined a new x / y coordinate as the target "destination." But, not wanting to spoil the moment of surprise (and thereby deflate those expectant moments), I did nothing to indicate where that destination was. The user had to discover it on his or her own, and it was revealed only upon arrival. To make the experience even more abstract, I hid the mouse pointer
were visible.

were visible

Since the system's feedback was entirely visual, a dramatic visual change to indicate visual, a dramatic visual change to indicate
"arrival" seemed appropriate. Mousing over "arriva" seemed appropriate. Mousing over fade to black. The shapes changed (e.g., from circles to squares, or squares to triangless, an then the background returned to normal. The target destination was then invisibly moved to a different, randomly selected point.
This treatment successfully indicated
completion of the task, but there was still no tension of anticipation. I needed a way to tel the user - visually, and without words reflected on these statements by Mihai Nadiy - Anticipation is an expression of the connectedness of the world, in particula of quantum non-locality.
Anticipation is an attractor within dynamic systems. (2004) Perfect - connection and attraction were the answer! I had already linked the position of shapes to follow the mouse, but they needed to also be attracted to the target destination. The shapes' motion needed to express not ju mouse position but the relationship between
mouse position and destination. By observing this relationship, the user could deduce where they needed to go.
I modified the rules so the shapes would not just follow the mouse, but also converge on it when close to the target. This was not clear enough, so I factored in opacity, so when the mouse position was far from the target, the gray (or completely invisible). Moving th mouse closer to the target brougt the shap closer together and increased the opacity to dark gray or black). So, in a way, the user was rewarded first with shapes appearing on-screen, and second, by seeing them cluster together. Then, once the target destination was found, the fade-to-black transition was triggered, and the process began anew. User testing during the in-class critique revealed that this approach worked quite well.

Incredibly, this was only a one-week project, but the experience was invaluable. These issues of non-verbal instruction, challenge, projects including my thesis projects, as we'l projects, including my thesis projects, as we li see in a moment.

An element of anticipation is essential for engagement of any substantial duration The question is how to elicit that emotional experience of anticipatory tension. Equally important is communicating instruction to the user, if they need to do something to achieve the goal and trigger the anticipated event, then they must be told or given clues on how to do that. The system has to communicate the terms of interaction with nonverbal, visual
cues, or the user will remain cues, or the user will remain hanging in
suspense - until they give up and walk suspense - until they give up and walk away

Early Experiments

Using video as an interface input allowed me to explore some fun technologies, like acr vision and live video processing. One of the computer vision libraries available for Processing offers face detection, which lets the system look at each frame of incoming video and analyze whether or not any faces are present in the image.

Although face detection is more popularly sociated with the security industry and, which can identify faces and adjust exposure ttings accordingly, this technology is ine for exploration in the context of interactive art. Faces are emotionally loaded entities, the are our primary means of both identifying others and recognizing ourselves. The emotional responses we have to faces cannot be overstated, and this power makes them prime targets for artistic exploration.
More pragmatically, face detection can be used to isolate a person's position against a background of visual noise. Many interactive
deo projects track "motion" by looking only at which pixels changed from one fra
the next. (Gesture Project used this simple definition of motion.) By using computer vision algorithms to look for faces, our systems can disregard all other visual input, such as objects moving in the background. Different face detection "profiles" can be used to identify faces from different angles (head-on, $3 / 4$ profile .ur profile, for example), so we can even differentiate between people facing directly ward the and those turned away from it.
Of course, computer vision is nowhere ear perfect, so good lighting is critical. The algorithm needs to be able to see two eyes and a mouth in order to identify a face. If only half the face is well-lit, it will not be detected. In my experience, false postive identifications are actually more common - such as when the system "sees" a face that isn't really there, in the folds of a shirt or among shadows cast

far in the background. The computer has no sense of physical depth, so a small circle near
the camera will be perceived the same as a much larger circle very far away. Both could be interpreted as "eyes" of the same face, eve though they are hundreds of feet away in physical space. The camera knows only pixels Despite these technical considerations, I was committed to exploring face detection's possibilities. My first experiment was video image analyzzed it for faces and then blurred a portion of the video around the user's face. The blur gradually intensified user's face. The blur gradually intensified,
then diminished, cycling through varying levels of clarity. I incorporated easing, so the blurry box would move smoothly, gliding not jumping, into place. Technically, it supported identifying only one face at a time, so introducing a second or third user confused the system. (The blurry box would jump quickly from face to face.) But for a quick
sketch, it worked well. sketch, it worked well.

Users hated it. I showed the project to a number of friends, and the universal reactio was to move around, trying to dodge the burry rectangle. A couple people tried to physically push the blurred box away from their faces using their hands. I quickly realized that this blurring effect was operating contrary to the engagement effect of mirroring. User were seeing themselves, and the system's moion (of he bury box) was coupled to effect was interrupted visually users werc immediately annoyed and put off. People immediately annoyed and put off. People
wanted desperately to see their own faces, just torsos and necks topped by fuzzy squares. I had designed a frustration machine.

I interpreted this user frustration to mean he project was not successful, but Gunta Kaza encouraged me to explore it further. She pointed out that the experience triggered a strong emotional response from users if not a positive one), and for that reason, at least, wa worth exploring further.

Stills from the "replaced face" experiment.

For the next iteration, I wanted to know how people would react if the blurry box was gone and they were shown a face - just not heir own.
I tapped into the Flickr API to retrieve the most recent photographs tagged with "face" or "person." Then, the system would run face detection on those photos. If no obvious face was found, the image was discarded. If a face was found, the image was cropped and stored in memory. Then, when someone stepped in front of the camera, one of the Flickr faces wa elected at random and mapped over that of e user's. Every 10 seconds or so, a new facc was selected and displayed.

Users found this version much less frustrating, but extremely creepy. They wanted to know where the other faces came from, and why they were being placed over their own. Some juxtapositions were more entertaining than others, such as a baby's face, or a face with a shape and hairline that isually matched the user's. In the event of he latter, users would reposition their bodie best fit the image being shown, like the nverse of a carnival cut-out: a clown's face on top of your body.

Clarified Direction

Neither of these quick projects were the engaging, rewarding experiences I wanted to create, but the discomfort they induced provided me with some valuable insights. Gunta encouraged me to consider framing the system-user interactions in terms of challenge and reward. My Gesture Project, for example was 100% reward - there was no challenge. But maybe a reward would be sweeter if users had to work for it by tolerating some amount of intentional, designed discomfort.
Yet, how can we challenge someone whil ecsentially no coged. When a user ha hey have not paid money to see it or worked hey have not paid money to see it or worked to create it, how can we incentivize them to
overcome the discomfort of the challenge? As described earlier, establishing a sense of anticipation is essential. By hinting at the rewards to come, without revealing them too soon, we hold out a proverbial carrot for our users to pursue. But such a challenge/ reward structure may be too simple. We must remember that we are trying to create positive, aesthetically unified experience on he whole, not just sequential alternations of

In Rules of Play, game theorists Katie Sale and Eric Zimmerman review the researc who has written extensively on cultivating the peaceful mental state of "llow." Csikszentmihalyi's state of flow corresponds roughly to my earlier definition of satori: quiet, concentrated mental state, in which the subject's focus is entirely on the task at hand in the present moment (1990). Salen and Zimmerman apply this research to gam design theor, a s ing ha aill must fairly match the user's skill level (2004). wiety and failure One that is too leaves users bored and disengaged. To elicit an engaged state of flow, the challenge must be of appropriate difficulty. As the user gains experience with the system over time, the challenges must escalate at a corresponding rate in order to sustain the same level of engagement.

Game designers, of course, strive to create games with "replay value" and even addictiv qualities. Gamers should be engaged not only in

Zimmerman consider games as systems of rules and actions. They write, "If you create a space of possibility that rewards players for exploration, then you are likely to have players that want to see more permutations of how the rules play out" (2004). All the while, the idea design would elicit what Csikszentmihaly calls an "autotelic" experience, meaning "a self-contained activity, one that is done not with the expectation of some future benefit, but simply because the doing itself is
the reward" (1990) Use
 fall the challenges presented with that interaction
So the primary design challenges for So the primary design challenges for my
thesis projects became: to engage participants, thesis projects became: to engage participant
construct a sense of anticipation, and then reward them for tolerating the discomfor elicited from sustained engagement. My approach had shifted from an attempt to create a universally engaging and memorable experience to a study of human behavior. By designing increasing levels of challenge and reward, I could gather data on the intensity of partion in age miterance

Social Context

So, then, what reward to offer, and what hallenges to precede it? To my mind, the ultimate reward is enlightenment: allknowingness, clear perception, right seeing, neness with the universe, and the thought less awareness of the present moment that erally bestowed upan uers of course but could allude to it figuratively and at least y to trigger enough physical discomfort a motional ambiguity to elicit a state of satori. With enlightenment as the reward, stillness would be the challenge. Stillness can be iterpreted both metaphorically, as in stillness of mind, as well as physically, as in a lack of motion. The latter is easily measured by omputer, so users could progress toward enlightenment by being physically still. Movement would trigger regression away from the goal.
Nearly all video-based installations reward notion - jumping up and down, waving one's tillness, which should not be confused with hactivity or a lack of interaction. My early user tests showed that maintaining stillness s , indeed, quite a challenge, and the level of interaction, as reported by users, can be intense. Once participants understand that the key to success is not moving, they grow very quiet, still, and focused, watching and listening closely to whatever the system does nex.
described eariier, video-based projects are ways fundamentally social projects, since hey can be used by multiple people at once In many installations, participants may either interact independently of each other or work oogether. In my project, I built functionality entrol of the piece tracking the mois oly one individual) or giving all users som nput (all user's motions are considered). M hope was that, by considering the motion of all participants, the system would encourage social negotiation between its users. This would make the challenge of stillness eve more difficult to attain, since interacting with thers requires some amount of motion (at east a gentle nudge or mumbled instruction Also, we are used to staring silently at screens, but ignoring a fellow human being is mpolite. So there is not only tension between the users and the system, but among the users hemselves, as they strugste to mainain foch other Thus, the participants inadvertently ecome performers, and the system expand o include not just the screen and sound, but also the people in front of that scree and the observers who are watching those people. As with a flash mob, anyone presen becomes an active participant at some leve hether willingly or unwittingly so. Even pure "observers" are engaged in the dynamic because their very presence serves to distract participants from the task at hand.

Structuring the System
With a primary metaphor of stillness as a neans of progressing toward enlightenment, Practice's initial display had to be grayscale, blurry, and dark. The experience begins with my interpretation of the hazy state of everyda life. We move quickly, going through the notions, without reflection or clarity around why we make the decisions that we do.
But with stillness comes clarity, so when the user stands still, facing the screen, the system gradually removes the blur, and the image comes into focus. Beyond that, color is slow estored, until the participant finally sees into a mirro
Of course, any participant motion disrupts the stillness, in which case the system regress -color fades away, and the sharp image unclear sta
lknew that the system would do at least his much, but I also envisioned the addition of several more advanced stages during which the mirroring would be augmented with increasingly complex imagery. This sequence of stages would culmin.

Soon after beginning work on the project, had to consider the structure of my code. How could I organize these different programmatic elements in such a way that would suppo also ensuring a straightforward process for developing and inserting additional stages that I hadn't yet designed or considered? 1 settled on using a single number - a progress value - to track the participants' "position" within the sequence of stages, while each stage was assigned a whole number. For example, imagine each stage as a point along $1,2,3$, and so on. In the beginning the progress value is 0.0 . At
0.5 , we are halfway through the initial stage (stage zero). The scene is grayscale, but some blurriness has been removed. At 1.0 , the scenc is clear, and at 2.0 , we see in full color This structure was useful because, for each frame of video, the system had only to reference one number to know where it was in the sequence. So during each frame, two steps occur: First, the face tracking algorithm are applied, and an averaged "stillness value" is calculated. If the stillness value is above a certain threshold (meaning, there was little or no motion, then the progress value is value is low (meaning, there was a lot of
motion), then the progress value is decreased by a substantial amount. The increment/ decrement values are unequal, so progress is lost more easily than it is achieved - anothe way in which the operating metaphor wa expressed in code.
Once the stillness and progress values ar calculated, the system simply renders the 4.7, the system executes the code for stage four. In addition, a normalized value is used the determine the position within each stage. That is, 4.7 tells the system both that we are in stage four, and that we are 70% of the way through the stage. That normalized value is then used to drive different events within the stage, such as how much blur to apply or color to restore. Events that happen between stages, such as triggering sounds or resetting elements' positions, are controlled by comparing the previous frame's progress value to the new onc So, if progress moves'ron fust entered the stage, and it executes the appropriate actions Similarly, moving from 3.1 to 2.84 means we're regressing, so any audio played during stage three should fade out.
Structuring the project around multiple, self-contained stages tied to one numerical progress value gave me a great deal of control over each stage, and simplified the process of adding new stages.

Since my professional background is in user-focused web design, usability research is always an essential part of my design process. I had tested the "blurry box" and "replaced face" experiments only informally. But with Practice, I applied more structure to my user testing and cond tests at least weekly, enlisting around 20 ent people ove he course of a few months.
The earlier user testing can occur in the design process, the better. Ideally, the designe to the design along the way.
The most difficult design challenge with Practice was figuring out how to instruct stillness. In my first tests, users were content to see themselves reflected in blurry grayscale. But they never progressed through the system, because nothing was telling them ob still. My testers would invariably wave their arms and jump around in front of the ry to act impressed, despite their obvious disappointment that there wasn't more to m big art project big art project
I thought it
ought it might help to communicate that the system was seeing participants' faces, shape around each detected face. That only made testers move more, since they enjoyed watching the spiral spin and change size as they moved closer and further away from the screen.
Thinking the problem was in the rotating , time a new face was detected, a brief tone
 way, so I thought there would be no incentive for additional motion. But I was proven
wrong, and my testers only moved furthe wrong, and my testers only moved further and
faster this time, confusing the face tracking system, triggering many more blue dots and xylophone-like tones.
It was time to reevaluate my approach. This initial instruction was absolutely critical to the project's success. I was certain that, once participants understood the interaction model (stillness leads to progress and reward) they would smoothly advance through each siness is such a foreign concept dynamic media, which always incites us to go, go and never stop moving. So a completely new treatment was needed Since all testers found the mirroring element invariably rewarding (even when blurry), why not "punish" their motion by taking the mirror away? I removed the circles and sounds, and coded the system to quickly fade to black upon detecting too much motion. This worked perfectly finally, people stopped moving! By removin he visual stimulation altogether, I could provide immediate, negative feedback. With
a blank screen in front of them, users have no
incentive to keep moving. That, combined eng. Mat, combined "ent awa" can they the they ean in close, squinting and perplexed, asking hat happened?" Then, once they become still, the black fades out and the video returns. It usually takes no more than two or three of these disappearances for participants understand the interaction model.
At this point, I observe an "aha" moment in participants, when they understand that the system is looking for stillness. This initial tage zero is completely silent; the first audio an F . chimes. Entering each subsequent stag different chime for each) and begins loping other ambient audio. (In testing sers correctly understood these chimes indicators that something is "about to happen.")
The visual transitions, however, are deliberately very gradual and subtle, which ontributes to the sense of anticipation. For xample, it is only about halfway through stage two that users realize that the video is being colorized. The subtlety of these early tages primes them for focused observatio eching and listeni, dosely as they progres.

There's no substitute for experiencing Practice in person, but for the purposes of documenting the project here, I will describe each of the
eight stages and articulate the intent behind
the design of each stage.

A chime sounds, and video gradually
transitions from grayscale to full color
Too much motion in this stage triggers
motion causes only regression (a decrease
the progress value), but not a fade to black.

Stage 2 - White Snow
A chime sounds, and ambient drumming sounds fade in. Assorted, semi-transparent white circles begin falling down from above. They seem to be responding to gravity,
they cascade around participants' heads. This is the first indication to users that the system "sees" them. They discover that the shapes are indifferent to waving hands and
rms. Moving their faces (or whole bodies) affects the circles' trajectories, but that motion also triggers regression within the sequence In testing, some participants look up to see where the circles are falling from. The circles' elative sizes are proportional to how close , to the screen, so standing up close nagnifies the circles diameters.

Stage 3-Colorful Snow
Another chime sounds, and the drumming
loop continues. The physics of the cascadins
circles remains the same, but they gradually
ransition from white to assorted colors. This
ransithe carlier shift from
colorlessness to full color

Stage 4-Orbiting
A chime sounds, the drum loop stops, and spacey, ambient audio fades in. The circles no longer avoid participants' faces, but are attracted to them. The circles then orbit and obscure users' view of their own faces. This deliberate obstruction is intended to heighten the tension and discomfort of stillness. Just as my early experiments
obstructed users' faces, so do the circles here. With the mirroring interrupted, there is greater incentive to move. But moving to the
side to reestablish the view of oncelf of triggers regression. In testing, participants find this stage somewhat disorienting, and many tried to eat the circles as though they were floating pieces of candy.

Stage 5-Emotions
A chime sounds, the space-like audio stops, and a friendlier, yet contemplative audio track
begins looping. The circles have disappeared,
and now strings of text cascade down from
above, pulled down by gravity. Those that pa
near a face latch on and slowly orbit the face.
The words are feeling statements, taken from
the We Feel Fine ApI. The intent is to enhance the contemplative mood of the piece by forcing reflection on the statements presented, which In By .
statements to users, participants must consider whether or not they want to be associated with those statements. "I feel sad because of what I did today." "I feel happy that we were able to spend so much time together." Does the participant relate to these feelings? Do they cause him discomfort, possibly by exposing his own feelings that he would not have otherwise exposed in this public setting? In testing, sinc the source of these statements is not fully elt the system was somehow reading their minds.

Stage 6-Personal History
A chime sounds, and the emotion statements continue to drift and orbit. But a new visual element appears - a sort of flaming, colorful line that zigzags about the screen, ultimately coming to rest on each participants' third eye, at the center of the forehead. The line moves differently for everyone, because it is a visualization of individual participants'

Stage 7-Enlighterment
Warm, electronic tones gradually build and
crescendo, as the video blurs using a method
that produces diamond-shaped patterns, like
a photographic lens filter. As the diamond
blur increases, the whole image grows
brighter, until it is solid white. Just after the
audio peaks, it becomes suddenly silent, th
screen fades to black, and then video is
restored once more, blurry and gray. We
achieved the clarity of enlightenment, but
only for a few fleeting moments, and now we
are back where we began. refinement, it was time to test the project with people who I'd never met and who didnt know anything about the project. I contacted my friend Huy Revamp Salon here in San Francisco. I had installed the Gesture Project at the salon a few months earlier, and he has been a great supporter of my artistic process. Revamp is near 16th St. and Guerrero St., a busy corner in the Mission District with lots of foot traffic, especially on weekend nights. The salon has window facing Guerrero, and an entrywa protected by a lockable gate. It was a great opportunity. 1 could set up the video camera ne jeakers behind the Rand pasersby could experience the project and no equipment could be stolen. I proposed this plan to Huy, and he agreed to let me take over the front window for an evening. I chose Friday, February 12, the start of the Valentine's Day weekend, hoping to reach the crowds of people headed out for dinners and drinks.
I sketched out possible layouts, and then went over to the salon to take measurement 1 would need cables long enough to connect he comper ionera, projecor,

The final features I built into the Practic
projection. And I would need light - lots strong, even lighting directed out onto the sidewalk - to ensure that the face detection ould work at all. Finally, I would need to find fromide ber it be on the street. Another
Another friend, interactive artist Mary Franck, offered me the use of her projector for the weekend. On Tuesday the 9th, I picked up the projector, and made a trip to the lardware store to purchase clamp lights, an extendable curtain rod, and wire. Back at the salon, I maneuvered the camera, curtain rod, computer, and projector in place, and a plain white curtain I brought served well as projection screen. The physical setup wa ready, but I still had some changes to make to the software before Friday
pplication enabled the system to save muc f the data it was already c eration. This included
 ystem, including when it first appeared, progress it made through the various
stages.
For each face, a complete history of its size and x / y position for every frame in which it was seen
Once each minute, a still image capture of whatever was on-screen at that momen. I tried saving these screen captures more frequently, or even recording full motio ideo, but doing so slowed the system an unacceptable degree.

mad installation, but all of this data helped questions: How long would it take people to first understand that stillness was the key to fuccess? What was their tolerance for remaining still? And how many people would make it all the way to the final stage?

That Friday, Practicic ran from 9:00 p.m. until 11:00. A number of friends that I'd invited stopped by, and a handful of other people stopped to observe or engage, most only briefly, but some for sustained periods. During those two hours, I made the following observations and conclusions.
-The physical context is critically influential to the overall experience, as informs participants' expectations and what behaviors they will consider socially acceptable. A busy street is not necessarily the hest place for an meractive installation. I had hoped for a lot of foot traffic, and got some, but
most of those pedestrians were destinationoriented, not casually strolling. Guerrero is no very pedestrian-friendly, and the volume of car raffic encourages people to walk quickly, until hey can turn off on a more welcoming street

iday night participants.
installation a failure, but only amplified the discomfort and challenge of both remaining still and simply stopping in the first place. As the importance of context became clear, I understood that just one installation would no be enought to definitively answer any question were in pubic space, I would see very different resuls.

- Each physical space offers its own echnical challenges and opportunities Although the salon window was a perfect size for my purposes, the street was noisy, and the outdoor setting dictated that I could only sho the project at night, so the lighting conditions and aural environment were not ideal.
3 - Over the course of the evening, not one person stopped to observe or interact with he project unless there were others already engaged with it. It was critical that I had would have stopped otherwise. With only two or three people present, passersby tended to or three people present, passersby tended to
glance at the projection, but they wouldn't sto walking. But once there was a crowd of $10-15$ people, every pedestrian stopped, partly out of interest, but also due the physical necessity of navigating between so many people along the narrow sidewalk. This number of 10-15
functioned as a sort of critical mass, which would draw in new people as others left, and, for a time, was self-sustaining.
4 - To my great satisfaction, the socia interactions that I had anticipated and designed for were fully present. While active participants interacted with the system,
observers interacted with each other, and coached the participants. A fascinating coached the participants. A tascinating
dynamic evolved between the initiated and the dynamic evolved between the initiated and
uninititiated. In an ironic twist, the initiated those who had already progressed to higher stages and understood that stillness was the key to success - quickly grew impatient with newcomers, becoming frustrated when the uninitiated would move too soon. Initiated observers were torn between withholding the "secret" and encouraging others. They seemed to be content watching for a while, but when newcomer would "give up" or turn away fro the screen, the initiated would be quick to over here!" or "Stand still!" I anticipated this dynamic, to a degree, but not its intensity I hope it reflects that the interactive experience itself is so emotionally engaging that, having completed it, participants are motivated to coach newcomers so that they, too, may share in that experience.

 $\begin{array}{cc}\therefore & \because \\ \therefore \\ \therefore & \ddots\end{array}$

[^0]

By the end of the evening, the Practice application had generated about five megabytes of face tracking data and 168 screen captures. I then dove back into Processing to write a new program that would read the data files and generate some
visualizations. But first, some numbers. visualizations. But first, some numbers. Ces over the course of the evening, but faces over the course of the evening, but
about half of them "existed" for fewer than about half of them "existed" for fewer than
five seconds. I excluded these faces from my five seconds. excluded these faces from my
analysis, assuming that they were mostly false positives. Of course, many of the 605 faces that lasted for five or more seconds were also incorrectly "seen" by the face detection algorithms, as we'll see in just a moment.
In any case, I proceed with the understanding
that the data set is not quantitatively accurate,
yet can still be used to derive some
valuable insights.
My primary questions of the data were: For how long were people engaged, and how many
stages did they complete? Of those 605 faces, the average "lifespan" was 13.8 seconds the average "lifespan" was 13.8 seconds - not
very long. But an average isnt meaningful very long. But an average isn't meaningful
in this case because only a few participants in this case because only a ew participa time. The longest-lasting face existed for 5 minutes and 4 seconds, a considerable amount of time to stand up straight, look straight
ahead, and resist urges to turn your head and
acknowledge the people around you. The 50th percentile for time spent was only 7.6 seconds, and the 70 th was 10.6 seconds. The top 10% of faces lasted longer than 24 seconds, and only 7 of those lasted more than a minute.

Time spent aside, how far did people progress toward the final stage? The chan below shows all the numbers. Of the 605 otal faces, just 69 , or 11%, made it to the first stage (as indicated by the first bell sound, and
removal of blur), and only 6 experienced the enlightened ending, stage eight.

We would expect the numbers to decrease Wr each subsequent stage, and for the most part, that's the case. But notice that for stages four and eight, they actually increase. This indicates either face detection inaccuracies whether ralse positives or faces lost," then found," between stages), or instances of people have already progressed to a higher stage.

Number of Faces Arriving at Each Stage

This technical limitation is also expressed in this analysis of the time needed to reach each stage (see chart below).
Since the stages are always shown in the same order (five is after four, e.g.), we would expect later stages to always require mor ime than carlier ones. But, instead of an epresenting imperfections in the computer vision capabilities.

Although these numbers are not wholly accurate, they are still valuable. Participants may have been engaged for several minutes, then turned away for a few seconds, and returned to face the screen - which would have counted as two separate "face sessions, econe. Une and track peopl froms all end outside of the video frame) it wont be possible to automate this level of data collection around engagement.

Engagement is not limited to visible mesence in any case. In my observations, several people, especially those who came with friends, spent anywhere from 15 minute to an hour at the installation, engaged eithe directly with the system or as observers, sociaizing and communicating wirr others. the realm of the digital system, could not be tracked by the system, but was an equally tracked by the system, but was an equally
important part of the overall experience. Th important part of the overall experience. The
social interactions, along with the physical environment, formed the context in which the interactive system was experienced, and thereby informed participants' tolerance for different forms of interaction. Having to balance internal curiosity (or lack thereof) with external, social stimulation ("Stand still!") and anxieties "Everyone is watching me up here, and I look stupid!") supplemented the emotional range of an experience that, absent

14: 808

I am satisfied with these findings, and believe that they illustrate how, for the most part, the design successfully engaged participants on many different levels. In a world where vided advertisements and motion graphics compete for eyeballs and measure success in duration
of participation, I think it's valuable to take participation, I think it's valuable to take a the entire experience, including its physical and social contexts.
The data can only tell us so much,
especially in an uncontrolled environment, such as this busy street in the Mission District. User testing and ongoing refinements to the design are still essential, but future research could focus on expanding the role of automated data collection - perhaps using a second overhead camera to monitor the metaspace around the installation, counting both direct participants and third-party observers, their physical proximity to each other, and correlating noise levels to events in the system.
(For example, do cheers erupt upon successful (For example, do cheers erupt upon successful
achievements?) An ongoing challenge will be improving the quality of the data collected improving the quality of the data collected
without dampening the challenge and joy of without dampening the challenge and joy of
the overall experience. An highly controlled environment (such as a gallery space) may increase accuracy, but that physical context will trigger very different responses than that of a more chaotic, public space (such as a city street). Both are valuable for study, and each presents its own challenges and opportunities.

Credits
Practice uses data from We Feel Fine
(wefeelfine.org), by Jonathan Harris and Sep Kamvar, and incorporates recordings from Freesound (freesound.org) by the following authors: acclivity, chipfork uxpress, Freed, Jovica, kerri, uburban grilla, suonho, and zuben.

A portion of the face tracking data recorred by Practice. Each row represents the x, y, size, and progress values for one face during each frame that it was detected.

Cheeky

 ou Susi announced that he was organizing a gallery show entitled "American Cheese" for the 28th of the month. This was a rare opportunity to apply the conceptualframework and technical skills behind Practice framework and technical skills behind $P_{r a}$ toward something less aspirational. Over the course of two evenings, I came p with a concept, downloaded and edited the necessary audio samples, designed the
visual system (which was rudimentary, due visual system (which was rudimentary, duc
oo the time constraints), and adapted the fo the time constraints), and adapted the
ace tracking code from Practice for use in Cheeky. When viewing Cheeky from afar, the participant sees a white display with a small ouble-curve shape at center, sort of like a rounded X. As the participant moves in for a closer look, the X shape slowly expands, growing roughly in proportion to the user distance from the display. Face tracking monitors the size of the participant's face which it estimates how near or far dom even if the user jumps up close, the X shape will not jump in size, but smoothly scale up over a few seconds.
Upon reaching a target size of about 80% of the display height, the curved X separates in wo, vibrating rapidly while an offensive, yet stantly recognizable sound is played, and bown, semi-transparent "gas bubbles" ar ejected out from center screen and fly away in all directions.
 very emotional one, triggering a range ractios, of all at once, including embarrassment, shame, joy, disgust, love, and giddy excitement upon the realization that a computer has just released a digital fart in the participant's face. The abstract X can olonger be seen as anything but two cee esting against ea
xt evacuation.
The slow expansion of the X builds tension ound anticipation of what will happen next. The tension is released in a very visual, highly audible form - a representation of a bodily release that is both very common and socially off-limits (except for eight-year-old boys). So the social context is important, of course, and informs the range of feelings and decisions to be made by the participant in that one airy moment. At a performance art show called "American Cheese," it is probably okay to laugh at a fart joke, and not take yourself too _rob. Benkir we wore presented hich art? Or , what if you are the artist, and your friends who have seen Cheely can't stop recommending it to people you've just met? How does that recommendation influence the first impression you're in the process of making, and do you position yourself closer toward or further away from the project? Even when Cheeky is not on display, it has ways of making me uncomfortable while making me laugh.

Although Cheeky is designed for only one active user at a time (which is appropriate, given the intimate nature of the bodily
function on display), it employs many of
he same design principles as Practice to ngage third-party observers and become a social experience. In Cheeky, the visuals are important, but the audio is critical, since it expands to fill the space around it. At the "American Cheese" show, the display was positioned so that it couldn't be seen right away, but required some navigation within the gallery space to get a good look. So, as Thad
hoped, the uncomfortable audio caught the attention of uninitiated observers, who looked ver and witnessed the active participant, face close to the screen, either shocked and appalled (and, soon thereafter, even further appalled (and, soon thereafter, even further
shocked to observe that everyone else was watching him), or laughing uncontrollably, or both. The uninitiated knew, then, that this was some kind of fart machine, but without a clear view of the screen, its interaction model remained a mystery. This curiosity motivated them to experience it for themselves, but in the meantime, the sight and sounds of someone lse experieneng the piece was almost funny frm. And while our social self-consciousness may not be intense enough to induce a may not be intense enough to induce a that we just have to laugh. It may not be enlightenment, but it's not bad.
It gets funnier when people come back for repeat performances. In my testing, new users tended to jump back in surprise, or at least look away, trying to connect with the other people in the room. ("Oh my god, can you believe what it just did?" "This is in such poor aste!" "Make eye contact with me so I can commanisae to you that io not approve of
 from Freesound, the online sound sample archive. In these subsequent interactions, participants may have noticed some of the subtleties of the design, such as how the cheeks' vibrations are synchronized with the rot so louder noises produce greater cheek sparation), as ac ine specs of the ouggois and slowly for softer ones) The small, black circle at center is glimpsed only briefly, but its identity and function are unmistakable and cannot be forgoten. The ten sound samples are selected and played in random order. While that randomness helps explain part of what keeps the experience varied, it doesn't tell us why people are willing to (and even excited about) voluntarily approaching a machine that will fart, loudly, in their faces, even once they know that it will do so! I guess fart jokes never stop being funny.
Once Cheeky was working, the randomized Ibsh. I felt it needed one wore thin to keep users coming back for more. So I created the "lighter" stage. About ten percent of the time, when a release is triggered, the audio will play, gas bubbles escape, and cheeks vibrate - everything as normal - but with an additional twist: A small "flame" rises from the bottom of the screen, which lights the emerging gases on fire. Corresponding audio is played (click, click, WHOOOOOOSHHH?), and red triangles crudely represent the gas to a version control issue, the Cheeky shown at "American Cheese" triggered the lighter nearly every time, instead of just ten percent of the time.)

The lighter sequence adds another layer of depth and possibility to the interaction, and provides an incentive for participants to Kowingly put themselves in an uncomfortable plows, until they achieve the reward of the flaming fart. Because the lighter sequence is flaming fart. Because the lighter sequence is
played at random, users may have to suffer played at random, users may have to suffer
through the humiliation of anywhere from one to twenty or more evacuations. When the reward does come, it is very big and very loud, a release befiting the discomfort and effort equired to attain it.
Despite the low-brow content, I hope to have made clear how a number of techniques were consciously used to make Cheeky emotionally engaging, especially that of exploiting the tension of anticipation, pairing rewards and employing random elements to ensure variety in the experience. In the end, Cheeky may actually be more engaging end, Cheeky may actually be more engag
and successful (if less philosophically and successful (ifless philosophically
pure) than Practice. It is certainly a shor experience, since it requires the user to stand still not for minutes, but only moments. Practic i is slow-moving, deliberate, peaceful, and contemplative, while Cheeky is explosive, shocking, humiliating and downright offensive. Yet people love it.

Participants engaging with Cheeky at the "American Cheses" show organized by Lou Susi. Left column photos and top right photo by Lou Susi. Center colum photos and bottom right photo by David Tamés.

Credits
Cheeky incorporates recordings from Freesound rresound.org) by the following authors. Imomo, IFartInUrGeneralDirection, monterey2000, NoiseCollector, scarbelly 25 ,
and Walter Odington.
american chees
示

Conclusion

It is difficult to conclude this journey of discovery, when each new insight only leads to more questions. Conclusions ring with finality, yet this process has opened up countless new directions. Nonetheless, this is a good time to consider potential future explorations. We now know that dynamic system absolutely can elicit experiences that are engaging, reaingre, and memorable. and aural dici an wised capticipation of events to cone Enctablish can be sustained by maintaining anticipatory tension while offering periodic rewards, tension while offering periodic rewards,
emotional releases won by the discomfor the challenge. And visual mirroring is perhap the perfect medium for engagement, given our biologically innate understanding of mirroring is the ultimate interface medium, with zero learning curve. By considering the social context of the work, we can design systems that actively engage participants on multuple levels, both with he systems directly and with each othe

Yet more user testing is always valuable. I would like to test both Practice and Cheeky in a wider range of physical and social context. More controlied environments could offer consistent lighting, which, in turn, would elicit more accurate and meaningful data on motion and behavior. As face tracking algorithms improve, this data could become accurate enough to be useful for quantitative studies of human behavior. There may even be applications for psychological research, testing and discomfort.
and discomfort.
Practice and Cheek, though, are just tw
Practice and Cheeky, though, are just two there is certainly room for many, many more Practice could be expanded with additional stages, and Cheeky may be just the first in series of projects inspired by taboo bodily functions. It may not be high art, but Cheeky triggered such powerful reactions that it is worth exploring further. I am fortunate to have had one project that inspires such pure giddiness, and I hope to create many morc Thor is severely underutilized in dynamic media. Both of my thesis advisors loved Cheeky, but were surprised that I had created something so outlandishly silly. Apparently, for the past three years I had succumbed to the seriousness of design research and had been treating the entire field of design with he gravity it projected. But humor is too interested in engagement - hilarity trumps gravity every time. I am grateful to have gravity every time. I am grateful to have
stumbled upon Cheeky before completing my time at DMI, as it's opened the doors to a whole new area of research. The experience has also reminded me of what I so easily forget: that it's acceptable (even preferable) to integrate my full personality into my design work. In short, it's okay to be who I already am - farts and all.
I recently presented Cheeky to a class of shmen design students at the University of San Francisco. It was at the end of a gues fairly tame But when a pomale had been approached the screen and said it looked like "boobs," her visible discomfort amplifie like "boobs," her visible discomfort amplified
my own, and I was suddenly very focused on avoiding a harassment lawsuit. In a way, I was right back at Rainbow Pools, experiencing something unknown, unable to predict how my immediate future would play out. It was another moment of satori, elicited by m uncomfortable predicament.

In the end, I've learned that discomfort should not be avoided but embraced. Every
time we feel uncomfortable, awkward, or tense, we have an opportunity to evaluate why and learn something about ourselves. For a designer, these insights are invaluable, offering dues toward how to elicit similar emotions in others. Of course, resolving those moments of tension is essential; we want participants
to enjoy our designs, not dread them. But the path from a concept to an engaging design is athely obvious and straightforward For me, a successful design can only emerge from a structured process of describing the problem, designing solutions, observing users, and revising the design in response. My insistence on structure may be a psychological response to my own fear of ambiguity, the uncomfortable state that both Practice and Cheeky induce in others. Perhaps I find others experiences of ambiguity so interesting ces are so significant in my own life.
higuity, however, is a particular variety of discomfort that brings with it a special reward: an awareness of the present moment. those uncomfortable moments, our minds grow quiet, allowing us to focus. When experienced collectively, ambiguity can also us toger, connecting us with a shared not just about engaging users, but establishing human connections and deepening our relationships with each other

References

Branigan, Edward. Narrative Comprehensiona im. London: Routledge, 1992

Csikszentmihalyi, Mihaly. Flow: The Psycholog of Optimal Experience. New York: Harper \& Row 1990

Dewey John. Art as Experience. New York:
Paragon, 1979.
Heider, Fritz and Mary-Ann Simmel. "An experimental study of apparent behaviour: 243-259.

Hutchins, Edwin L., James D. Hollan, and Donald A. Norman. "Direct Manipulation Interfaces. User Centered System Design: Ne Perspectives on Human-Computer Interaction Hillsdale NJ. Lawrence Fsbape, 1986

Laurel, Brenda. Computers as Theatre Readins Massachusetts: Addison-Wesley Publishing Company, 1993.

Manovich, Lev. The Language of New Media. Camb
2002.

Michotte, Albert. The Perception Sasaliy. Andover, MA: Methuen, 1962.

Nadin, Mihai. "12 Definitions." anticipation info. November 22, 2004. Web. Accessed March 31, 2010.
Pines, Malcolm. "Mirroring and Child Development." Psychoanabtic Inquiry. 5 1985): 211-231.

Reas, Casey. Untitled talk during the orkshop "Creative Coding: An Introduction to Processing," Gray Area Foundation for the Arts, San Francisco, October 3, 2009. Lecture.

Salen, Katie and Eric Zimmerman. Rules of Play. Cambridge, Massachusetts: The mi Press, 2004.

Sckida Katsuki, Two Zon Curi Mumonken and Heikiganroku. New York: Weatherhill, 1996.

Utterback, Camille. "Luscious Complexity: Transcending the Doohickey" The Art, Technology, and Culture Colloquium, U Berkeley, October 5, 2009. Lecture.
are, Colin. Information Visualization: Perception Kor Design. 2nd ed.

Winnicott, Donald W. or-role of moth and family in child development." The

[^0]: 453
 -

