

Visualizing Network Relationships

Scott Murray

Abstract—The vast majority of network visualizations are based on simple graphs and are rendered with connecting lines that

communicate only one binary value: network nodes are either connected to each other or not. Information about the nature of the

connections is either not available or not represented in these kinds of visualizations. Relationship Visualizer is an application

that takes directed graphs with multiple edges as input and renders those edges visually meaningful. By incorporating

directionality as well as assigning each edge a quantitative value, a new method of visualizing multiple-edge graphs is introduced.

The application accepts input in a simple data format and employs basic user interaction tools to enable custom renderings of

data sets. This approach has potential for visualizing any directed graph data with multiple edges and quantitative values, such

as phone records, emails, social networks, economic trade data, website links, and network traffic.

Index Terms—Graph drawing, directed graphs, multiple edges, interactive graph visualization, network visualization.

1 INTRODUCTION

The vast majority of network visualizations use connecting lines that

communicate only one binary value: network nodes are either
connected to each other or not. Information about the nature of the

connection—its strength, frequency, or direction—is either not

available or not represented in these kinds of visualizations.
Extensive research has contributed incremental improvements to

methods for drawing simple graphs, resulting in more efficient

renderings and intelligently clustered nodes and edges that reduce
visual clutter. Little work, however, has addressed visualizing

directed graphs with multiple edges, specifically those in which each

edge has associated quantitative values, the focus of this paper.
Working with more robust edge data provides the opportunity for

each edge to convey not just a connection, but the nature of that

connection. Since directed graphs incorporate the directionality of
each connection, there are opportunities to visualize the (im)balances

between nodes—the two-way nature of the relationships, in other

words. Also, when working with multiple edges, each edge can be
assigned a quantitative value, which could be a measure of time, a

priority ranking, or any other relative value. Potential data sets for

directed graphs with multiple edges include: phone records, emails,
social networks, economic trade data, website links, and network

traffic. Data in simple graph form (single edges only) could not be

used with this new method.

2 RELATED WORK

The majority of recent research on graph drawing tends to focus on
improving the visual readability of representations of simple graphs.

Useful approaches include clustering related nodes [1] and clustering

related edges [2, 3] to reduce visual clutter, and even duplicating
nodes [4] in specific applications in order to make trends and

patterns more identifiable by human eyes.

An exhaustive search of recent literature in the field failed to
discover any visualization research using directed graphs with

multiple edges that encoded the edges as anything other than lines.

A significant paper introducing a new algorithm for generating flow
maps was found [5], but even that uses lines for edges, with edge

values encoded as thickness. The only visualization research that

uses bidirectional encoding [6] also employs lines.

3 APPROACH

The goal of this research was to develop a software tool that could:

• usefully visualize directed graphs with multiple edges,

• usefully visualize additional quantitative values associated

with each edge,

• employ motion as a means of encoding data and making the

end visualization more clear,

• employ interactivity and configurability to enable users to

adjust the visualization to best suit their purposes, and

• take a very simple data format as input, to ease adoption of the

tool for a wide range of purposes.

3.1 Useful Edge Representations

In the world of graph drawing, simple lines with uniform weight are
common, but reveal only that two members are connected—only one

bit of information. Yet lines may carry more visual weight and even

occupy a greater area (whether in pixels or ink) than the nodes to
which they connect, resulting in a low Tuftean “data-ink ratio” [7].

New visualization methods with more dense (and useful) information

resolutions are needed.
By visualizing not just binary connections, but properties of the

relationships between members, we could perceive visually which

relationships are balanced, lopsided, one-way, or reciprocal, and
identify similarities and differences across relationships.

A relationship-centric network visualization would de-emphasize

a network's members in favor of the relationships between them.
The first key contribution of this research is to segregate individual

edges into discrete visual forms. This approach runs contrary to the

conventional rendering of edges as lines, but by representing each
edge as its own visual object, we both drastically increase the data-

ink ratio as well as open up new possibilities for encoding even more

data.

3.2 Encoding Quantitative Values for Each Edge

Taking Tufte’s advice, if the visual representation is boring, we

should start searching for more interesting data [7]. Fortunately,
there is an enormous amount of data in the world that can be

structured in directed graph form and used with this tool. And now,

with each edge as a discrete visual form, we can attach a quantitative
value to each edge and represent that value in the visualization.

For example, it may be useful to visualize patterns of email traffic

within a company network. Each user’s email address could be
treated as a node, and each email as a directional edge, from node A

to node B. But a network administrator may also be interested in the

raw data volume of the exchanges, so a quantitative value of the
length of each email is appended to the edge. Then, in the final

visualization, the visual forms representing long messages could

• Scott Murray is with the Massachusetts College of Art and Design,
E-Mail: scott.murray@massart.edu.

appear larger than those representing short ones. Patterns may

emerge around users’ email usage, and high-traffic exchanges would
be visible at a glance.

3.3 Employing Motion

Existing interactive graph visualizations use motion only to animate
node placement and adjust edge lines accordingly. Relationship

Visualizer, however, employs motion (instead of arrows, for

example) to indicate edge direction, so related edges travel along a
path from node A to B, while opposing edges travel from B to A.

While inappropriate use of motion has potential to distract and

visually overwhelm the user (especially when viewing many nodes
and edges), this development is nonetheless a new approach and may

be considered a more intuitive representation for many users.

3.4 Interactivity and Configurability

This approach asserts that there is no single ideal visualization for

any given data set. A visualization’s success is best judged by its

users, and each user will have differing needs and interests in the
final output. Therefore, Relationship Visualizer employs basic

interactivity (such as selection and dragging of nodes) and user-

configurable parameters (such as rate of motion, and arc width) in an
effort to enable each user to actively explore his or her data set and

render the tool’s visual output in the form that will be most

meaningful to that user.

3.5 Simplified Data Format

To encourage easy use with the widest possible range of data sets,

the tool has been designed to accept input data in a very simple,
accessible format (see section 4.1 below).

Processing, a free, open-source programming environment, was

chosen as the development platform, in part due to its strengths in
easily capturing and parsing data sets, but also to ensure accessibility

of the tool to others after its release. Version 1.0 or newer is

required to use Relationship Visualizer. (Processing can be
downloaded from processing.org/download.)

Also, it should be acknowleged that the final application

incorporates and builds on simple graph drawing code developed by
Ben Fry [8]. All development work toward directional edges with

quantitative values was done by the author.

4 RESULTS

This section provides a walk-through of the Relationship Visualizer

application, illustrating some of its potential uses. Mobile phone

usage records have been used as the sample data set, with phone
numbers obfuscated to protect privacy.

4.1 Data Input

To run successfully, a plain text file named “data.csv” must be
placed in the sketch's data folder. The data file must contain edges in

the form:

from_node_name, to_node_name, edge_value

Node names can be alpha or numeric characters, and should not be
surrounded by quotation marks. Edge values must be numeric. All

values must be comma-separated.

4.2 Default Visualization

When the application is first run, the default, “simple graph”-like

visualization is shown (see figure 1). Nodes are represented by gray

circles, and node names are shown when the circle diameter is wide
enough to accommodate the text label. The radius of each circle

reflects the number of connecting edges, so nodes with more

connections are shown as larger circles.
Edges are aggregated and represented as simple gray lines

between nodes. At this point, neither the multiplicity of edges, nor

their directions or associated values are shown.
Although nodes are initially placed using a basic force-directed

layout method, they can be dragged with the mouse, and positioned

as desired by the user.
Pressing the “L” key will switch to a clustered layout method in

which large-value nodes are weighted more toward the center, and

low-value nodes are pushed toward the outside.
When using the clustered layout, spacing between nodes can be

adjusted using the “J” and “K” keys.

Initially, all nodes are shown. Low-value (small) nodes can be
filtered out and later revealed by using the bracket keys.

A basic help screen describing all of this appears (not shown

here), and may be toggled off and on using the question mark key.

Fig. 1. Default visualization, with many small nodes hidden. Fig. 2. First visualization with individual edges represented as discrete

visual forms.

4.3 Edges Encoded

Pressing “3” reveals the first visualization with edges encoded as

discrete visual forms—small blue and red circles, in this case (see

figure 2). Motion reveals the edges’ directionality, which is also
reinforced by the colors. The color choices are arbitrary, and a

greater prevalence of blue or red in the visualization should not be

considered indicative of any trend; they are simply used here to help
distinguish edge direction.

Motion can be accelerated, slowed, or stopped altogether by

pressing “S” and “F”. Notice how, without lines present,
connections with very few edges may be difficult to discern.

Increasing the rate of motion makes those low-value connections

more easily perceptible, while slowing the rate of motion helps with
high-value connections.

With all motion stopped, it may be useful to reveal path

guidelines that indicate edge direction by pressing zero (see figure
3). The light gray lines and arrows are particularly useful for

generating static visualizations, where motion cannot be used to

indicate direction. Pressing “P” exports a copy of the on-screen view
as a high-resolution, vector PDF file.

4.4 Quantitative Edge Values Encoded

Pressing “4” reveals an equivalent visualization, but with edge
values (in this case, telephone call duration) encoded as the diameter

of each edge-circle (see figure 4). Longer phone calls are larger

circles, and shorter ones smaller. Immediately, a wealth of new
information is present, and the user can identify imbalances and

trends within the network of relationships. Telephone number A

may call B more often, but when B calls A, they tend to talk for
longer periods. Or, A places few outgoing calls, but receives

incoming ones from many different numbers.

4.5 Quantitative Edge Values Encoded (Alternate)

Pressing “5” reveals a similar view, but with edges represented as
rectangles, and with edge values encoded as the height of each

rectangle (see figure 5). This view is similar to a traditional bar chart

representation, and may be more appropriate given the data set.
Also note that the paths traveled by edges between nodes are

slight arcs, enhancing visibility of the edges, which would otherwise

overlap. The plus and minus keys can be used to increase and
decrease the width of the arcs, which may improve readability,

depending on the desired node placement (see figures 6–9).

Fig. 3. Discrete edges, with directional guidelines shown.

Fig. 4. Discrete edges with quantitative values encoded as circle

diameter.

Fig. 5. Discrete edges with quantitative values encoded as bar length.

Fig. 6. With nodes arranged along the same axis, and edge paths

relatively flat, the edge values are difficult or impossible to discern.

Fig. 7. Even as rectangles, the values are difficult to perceive.

Fig. 8. When the edge path arcs are widened, edge values are

much more clearly perceived.

Fig. 9. Same as at left, but with rectangle edges.

5 CONTRIBUTIONS

This project offers a number of contributions toward the future of

visualization of directed graphs with multiple edges:

1) The presentation of edges as discrete visual elements

2) The use of motion to indicate edge directionality
3) The encoding of an additional quantitative value

 for each edge

As discussed in the “Related Work” section, nearly all prior

visualizations of graphs with multiple edges maintain the convention

of representing the edges as lines. The multiplicity of edges is
typically encoded as a visual property of the line, either thickness,

brightness, or hue.

The primary contribution of this project is to break with the
tradition of representing edges solely as lines. As we can see now,

when multiple edges are present, each edge can be visualized

discretely, whether as a circle, rectangle, or some other form. Not
only is there no need to aggregate multiple edges into singular visual

form, but visualizing each edge as its own entity provides

opportunities for encoding additional quantitative values specific to
each edge. More data can be communicated using discrete edges

instead of traditional lines. While lines may be superimposed on this

sort of visualization, they are necessary only when few edges are
present. Otherwise, the arrangement and motion of edges

communicates the binary information originally represented by the

simple line: whether or not two nodes are connected. Connections
are still obvious, yet much more detail about each relationship is

made visible.

6 CONCLUSION

This research opens the door to a number of other visualization

possibilities, such as experimenting with alternate visual forms for
edges (beyond just circles and rectangles), incorporating ordering of

edges in date/time sequence, encoding additional values onto edges

to render additional dimensions of data, and designing legible
labeling systems to reveal exact values, where appropriate.

It is the author’s hope that others will expand upon the

visualization and interaction techniques presented here to present
more valuable and data-rich presentations of all kinds of network

relationships.

ACKNOWLEDGEMENTS

Thanks to Maneesh Agrawala of UC Berkeley for providing the

opportunity to pursue this research, and to Ben Fry for his work on
Processing and development of the initial simple graph code from

which Relationship Visualizer grew. Also, many thanks to Jan

Kubasiewicz, Brian Lucid, and Joe Quackenbush of MassArt for
their support in my pursuit of novel visualizations of data.

REFERENCES

[1] Y. Jia, J. Hoberock, M. Garland, and J. C. Hart. On the Visualization of

Social and other Scale-Free Networks. IEEE Transactions on

Visualization and Computer Graphics, 14(6):1285–1292, 2008.

[2] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-Based Edge

Clustering for Graph Visualization. IEEE Transactions on Visualization

and Computer Graphics, 14(6):1277–1284, 2008

[3] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency

Relations in Hierarchical Data. IEEE Transactions on Visualization and

Computer Graphics, 12(5):741–748, 2006.

[4] N. Henry, A. Bezerianos, and J.-D. Fekete. Improving the Readability

of Clustered Social Networks using Node Duplication. IEEE

Transactions on Visualization and Computer Graphics, 14(6):1317–

1324, 2008

[5] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow Map

Layout. In Proc. of IEEE Symposium on Information Visualization

(InfoVis ‘05), pages 219–224. IEEE Press, 2003.ber 18-20, 1994, pages

pp. 248–261. Springer, 1998.

[6] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex

networks reveal community structure. Proceedings of the National

Academy of Sciences, 105(4):1118, 2008.

[7] E. R. Tufte. Envisioning Information. Cheshire, Conn.: Graphics Press,

2006.

[8] B. Fry. Visualizing Data. Sebastopol, CA: O'Reilly Media, Inc., 2008.

